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Abstract

Advances in Large Language Models (LLMs)
have inspired a surge of research exploring their
expansion into the visual domain. While re-
cent models exhibit promise in generating ab-
stract captions for images and conducting nat-
ural conversations, their performance on text-
rich images leaves room for improvement. In
this paper, we propose the Contrastive Read-
ing Model (Cream), a novel neural architec-
ture designed to enhance the language-image
understanding capability of LLMs by captur-
ing intricate details typically overlooked by ex-
isting methods. Cream integrates vision and
auxiliary encoders, complemented by a con-
trastive feature alignment technique, resulting
in a more effective understanding of textual
information within document images. Our ap-
proach, thus, seeks to bridge the gap between
vision and language understanding, paving the
way for more sophisticated Document Intelli-
gence Assistants. Rigorous evaluations across
diverse tasks, such as visual question answering
on document images, demonstrate the efficacy
of Cream as a state-of-the-art model in the field
of visual document understanding. We provide
our codebase and newly-generated datasets at
https://github.com/naver-ai/cream.

1 Introduction

Recent advances in large language models
(LLMs) (Brown et al., 2020; OpenAI, 2023; Zhang
et al., 2022; Touvron et al., 2023) have facilitated
the development of numerous real-world applica-
tions, providing users with valuable and meaning-
ful services. Researchers are increasingly focus-
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Figure 1: Comparsion results on a text-rich image.
While prior methods, such as BLIP-2 (Li et al., 2023)
and LLAVA (Liu et al., 2023a), miss image details, our
proposed Cream effectively captures these features for
accurate LLM responses. On the other hand, simply
incorporating OCR input (e.g., OCR + ChatGPT) has
limitations due to its inability to fully comprehend visual
context.

ing on extending these unimodal LLMs to multi-
modal LLMs, particularly large visual language
models (LVLMs), leveraging vision encoders de-
signed to tackle information-rich visual tasks (Rad-
ford et al., 2021a; Tsimpoukelli et al., 2021; Wang
et al., 2022a; Alayrac et al., 2022; Wang et al.,
2022b; Driess et al., 2023; Zhu et al., 2023).

To evaluate LVLMs, various downstream tasks,
such as image captioning, visual dialogue, ground-
ing, reasoning, and question generation, have been
employed. Despite demonstrating impressive re-
sults on these tasks, a recent study (Liu et al.,
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2023b) indicated that LVLMs exhibit limitations
when dealing with text-rich visual tasks, lead-
ing to reduced applicability in real-world appli-
cations such as document visual question answer-
ing (DocVQA). Visual document understanding
(VDU) tasks require the comprehensive analysis of
multiple information types, including text, objects
(graphs and charts), and layout. However, existing
LVLMs struggle to deliver satisfactory solutions
in these specific contexts due to their ability to ex-
tract limited fine-grained features from images, as
shown in Figure 1.

In this paper, we introduce Cream, Contrastive
reading model, specifically designed to effectively
overcome these limitations. Cream features a
streamlined and practical architecture, seamlessly
integrating a general vision encoder with auxiliary
encoders and innovative training techniques. In ad-
dition to a primary vision encoder for overall visual
feature extraction from document images, Cream
employs auxiliary encoders—such as OCR and ob-
ject detectors—for text and object-specific feature
extraction. Cream utilizes auxiliary encoders as
well as a vision encoder to extract fine-grained
features without missing image details while under-
standing the visual context. When combined with
LLMs, Cream overcomes the limitations of LVLMs
and achieves robust performance in text-rich visual
tasks. To further enhance the model, we propose
a contrastive feature alignment method to mitigate
biases between the vision and auxiliary features
extracted from each encoder during training.

We conduct extensive experiments across var-
ious VQA tasks. We perform experiments on
two models: our standalone Cream model and a
model that combines our Cream model with frozen
LLMs. The experimental results demonstrate that
standalone Cream achieves results comparable to
the state-of-the-art in tasks that necessitate the ex-
traction of specific text information from docu-
ment images. Furthermore, we observe that when
combined with LLMs, Cream demonstrates robust
performance in VDU tasks, which are challeng-
ing for existing LVLMs. Lastly, we will open-
source Cream’s codebase and the newly built VQA
datasets, TydiVQA and Wikipedia Key-Value VQA
(WKVVQA), to foster further research and innova-
tion in the field of visual document understanding.

Our contributions are summarized as follows:

• We present a novel model architecture and as-
sociated training techniques tailored for visual

document understanding tasks which serves
as the eye of LLMs for performing text-rich
tasks, as it can provide both visual context and
image details to LLMs.

• Through rigorous experimentation, we demon-
strate Cream’s superior performance on sev-
eral downstream tasks requiring the extraction
of text information from document images.

• We provide an accessible approach for inte-
grating the proposed model with LLMs, high-
lighting improved performance across specific
downstream tasks.

• By sharing the codebase and several newly-
generated datasets, TydiVQA and WKVVQA,
we contribute valuable resources to facilitate
ongoing research and development in visual
document understanding tasks.

2 Related Work

2.1 Visually-Situated Natual Language
Understanding

Visually-situated Natural Language Understand-
ing (NLU) combines computer vision and natu-
ral language processing to enable a more precise
analysis of visual data through language. Early
researches (Xu et al., 2020; Hong et al., 2022)
mainly focused on performing OCR on visual doc-
ument data and utilizing the extracted text for anal-
ysis. Subsequent studies (Kim et al., 2022; Davis
et al., 2023; Lee et al., 2022; Liu et al., 2022)
explored methods that directly process document
images without relying on external OCR models.
Donut (Kim et al., 2022) proposed a model that per-
forms text reading directly from document images
as a pre-training task, enabling document under-
standing without the need for an external OCR
model. Pix2Struct (Lee et al., 2022) introduced
the concept of screenshot parsing objectives, while
MATCHA (Liu et al., 2022) incorporated chart
derendering and math reasoning into the model
training. For improved performance, approaches
that leverage both image and text extracted by OCR
have also been explored (Kil et al., 2022; Tang
et al., 2022; Appalaraju et al., 2021; Xu et al., 2022;
Huang et al., 2022). LayoutLMv3 (Huang et al.,
2022) introduced Word-Patch Alignment technique
to classify the alignment between texts and their
corresponding image patches. UDOP (Tang et al.,
2022) employed a unified encoder to represent fea-
tures from both the image and texts, transforming



information from both modalities into vision-text
embeddings by summing its image patch and the
text features.

Cream, like other methods, performs document
understanding from various modalities. However,
Cream can extract aligned multi-modal features at
a fine-grained level from each modality encoder
enabled by contrastive learning (CL) without the
necessity for an additional fusion encoder. Par-
ticularly in the field of VDU, where images are
rich with various texts, it is important to extract
fine-grained text and visual information as well as
semantic information.

2.2 Applying LLMs to Visually-Situated NLU

By scaling up the training data and model pa-
rameters, LLMs have achieved significant suc-
cess (Rae et al., 2021; Brown et al., 2020; Chowd-
hery et al., 2022; Hoffmann et al., 2022; Touvron
et al., 2023). Furthermore, InstructGPT (Ouyang
et al., 2022) and ChatGPT (Shahriar and Hayawi,
2023) demonstrated that aligning large-scale pre-
trained language models with human intent al-
lows them to provide contextually relevant answers
to user queries across various tasks. Similarly,
Alpaca (Taori et al., 2023) and Vicuna (Chiang
et al., 2023), as open-source models, have shown
similar performance through instruct tuning from
LLaMA (Touvron et al., 2023).

Building upon this success, there have been var-
ious attempts to incorporate visual information
into LLMs to address vision-language tasks (Tsim-
poukelli et al., 2021; Alayrac et al., 2022; Li et al.,
2023; Zhu et al., 2023; Dai et al., 2023; Liu et al.,
2023a; Ye et al., 2023). They involved extracting
features from visual information through a vision
encoder and utilizing LLMs to tackle various tasks
as a reasoning module. BLIP-2 (Li et al., 2023) ad-
vanced this approach by training only a Q-former
module that bridges the gap between the vision en-
coder and LLMs while keeping the vision encoder
and LLMs frozen. MiniGPT-4 (Zhu et al., 2023)
and InstructBLIP (Dai et al., 2023) froze the pa-
rameters of the Instruct-tuned LLMs when training
vision-language models. LLAVA (Liu et al., 2023a)
and mPLUG-Owl (Ye et al., 2023) also trained the
parameters of LLMs along with vision-language
instruction following data.

While these methods have demonstrated suc-
cessful vision-language learning with LLMs, they
have not yet shown strong performance in visually-

situated NLU tasks, including question answering
on visual documents. These methods have limited
ability to extract fine-grained features in images,
which has hindered their ability to match domain-
specific methods in traditional text tasks (Liu et al.,
2023b). Cream exhibits strong performance in
analyzing text-rich images, where previous meth-
ods have encountered limitations, by leveraging
its powerful visual understanding capability when
combined with the LLMs.

3 Method

Our primary interest lies in accurately answering
natural language questions given an image, based
on specific evidence within the image. For instance,
when answering a question that involves extract-
ing specific information from a document image,
the output can be meaningless unless the text in
the image is correctly recognized and addressed
even if the answer is linguistically plausible (see
Figure 1). In this work, we investigate the sys-
tem that effectively utilizes information embedded
in images to accurately respond to given natural
language queries. A crucial aspect of this process
involves the model’s ability to identify specific fea-
ture evidences in the image, such as texts, objects,
and other relevant features. In this section, we de-
scribe our model (§ 3.1), explain its integration
with frozen LLMs (§ 3.2), and provide details on
model training and data preparation (§ 3.3).

3.1 Contrastive Reading Model
We propose Cream (Contrastive reading model),
a robust image understanding module designed for
visually-situated language understanding applica-
tions. We consider two application scenarios. In the
first scenario, Cream is deployed as a standalone
model, where its decoder directly generates the
required information in text form. In the second
scenario, Cream is combined with an LLM, with its
decoder serving as a soft visual prompter. Here, the
decoder’s output hidden state is utilized as a visual
prompt for the LLM. Figure 2 depicts the overall
pipeline, with the upper part illustrating the entire
pipeline architecture and the bottom part represent-
ing Cream’s feature alignment scheme. The pros,
cons, and differences between these scenarios are
examined in our experiments and analyses (§ 4).

3.1.1 Architecture
The Cream architecture comprises two encoders
and one decoder. Given an input image, the vi-
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Figure 2: Overview of Cream’s framework. (a) Image patches initially feed into the vision encoder. ∗The
information extracted from off-the-shelf OCR and object detectors is delivered to auxiliary encoders if available.
(b) The encoded vector representations are well-aligned using a contrastive learning scheme. For a given natural
language query, the decoder either generates the answer by referring to the encoded vectors (yellow dotted line), or
serves as a soft visual prompter for an LLM (blue solid line). Note that encoders are frozen when training with the
LLM.

sion encoder processes the image into a set of em-
beddings. Additionally, if available, specific fea-
ture evidences (e.g., texts or objects within the im-
age) are extracted by corresponding detectors (e.g.,
OCR or object detector) and the extracted items
are passed to the auxiliary text encoder, where they
are embedded into a common feature space. The
output representations from the two encoders are
trained to be aligned in the feature space through a
proposed CL scheme (See the bottom part of Fig-
ure 2). The features are concatenated and fed to the
cross-attention layers in the decoder. Given the em-
beddings alongside a natural language query, the
decoder generates the desired information through
attention mechanisms. The following sections pro-
vide details on each module.

Vision Encoder The vision converts the input
image x∈RH×W×C into a set of embeddings
{zi|zi∈Rd, 1≤i≤n}, where n is the feature map
size or the number of image patches, and d is the

dimension of the resulting output vectors. CNN-
based models (He et al., 2016) or Transformer-
based models (Dosovitskiy et al., 2021; Liu et al.,
2021) can be used as the encoder network. In this
study, for simplicity, we employ the Vision Trans-
former (Dosovitskiy et al., 2021) with a 2D ab-
solute position encoding (Xu et al., 2020) and a
variable-resolution mechanism (Lee et al., 2022).
The variable-resolution mechanism is an input im-
age pre-processing strategy that converts the image
into a constant number of patches without distort-
ing the original image aspect ratio.

Auxiliary Encoder The auxiliary encoder en-
codes the information of extracted feature evidence,
such as OCR boxes and general object boxes, into a
set of embeddings {ẑi|ẑi∈Rd, 1≤i≤n̂}. As shown
in Figure 3, the extracted feature evidence is con-
verted into a sequence of token embeddings. For
this conversion, the recognized text is used for OCR
boxes, and the recognized semantic object label is



Figure 3: Token embeddings of the auxiliary encoder.
The center point of each bounding box is utilized for po-
sitional embedding. The text labels, such as “SP-AOZ”,
“Airplane”, are tokenized into subwords. Detailed pro-
cess is omitted in the figure for simplicity.

used for general object boxes. Subsequently, a
type embedding is added to distinguish OCR and
general object boxes. In addition, a 2D absolute
position encoding is applied to encode the loca-
tion information. For the backbone, we adopt the
BART (Lewis et al., 2020) encoder architecture in
this work.

Decoder We employ BART (Lewis et al., 2020)
as the decoder architecture, which processes the
set of embeddings {z1, ..., zn, ẑ1, ..., ẑn̂} and gen-
erates a sequence of vectors h ∈ Rm×d, where
m is the sequence length of the generated vectors.
Referred to as the last hidden states, these vectors
can be utilized in two different scenarios. (i) In the
standalone scenario, a linear language modeling
head, represented by a weight matrix W ∈ Rd×v,
is applied to the hidden states, yielding the token
sequence as follows: Ŷ = hW, where Ŷ ∈ Rm×v

is the predicted sequence of tokens and v is the size
of the token vocabulary. (ii) When Cream is inte-
grated with an LLM, the last hidden states of the de-
coder are first linearly transformed using a weight
matrix U ∈ Rd×d′ , where d′ denotes the dimen-
sion of the LLM’s input embeddings: h′ = hU.
The transformed hidden states h′ ∈ Rm×d′ are
then used as input to the LLM, serving as a soft
visual prompt that combines Cream’s visual un-
derstanding capabilities with the LLM’s language
processing abilities. For both scenarios, Cream
adopts the language modeling loss, where the de-
coder generates a sequence of token embeddings
conditioned on the image. The details of Cream’s
training objective will be explained in Section 3.3.3
and 3.3.4.

3.1.2 Contrastive Feature Alignment
To assimilate information such as OCR and object
data alongside image information within the de-
coder, we encode these inputs using an auxiliary en-
coder. However, in practice, it is uncertain whether
features originating from different encoders will
be well-aligned in common space. Our investi-
gation exposes misalignment in the information
encoded by the two encoders (will be presented
and analyzed in Section 4), and to rectify this, we
incorporate a simplistic form of CL objective into
the model training.

Given a set of OCR or general object boxes ob-
tained from an OCR or object detector, the embed-
ding of the feature evidence and the embedding of
the corresponding patch where the evidence is phys-
ically located in the image can be interpreted as
containing semantically similar information. Based
on this assumption, we apply CL, defining a posi-
tive pair as relationship between the embedding of
the feature evidence and the corresponding image
patch, while all other relationships are considered
negative pairs. Specifically, consider a scenario
where an image contains a ‘book’ with the title
‘Apple’. In this case, the patch in the image where
the book is located forms a positive pair with the
bounding box information labeled ‘book’. Addi-
tionally, the image containing the word ‘Apple’
forms a positive pair with the ‘Apple’ text label
and its bounding box information. Any other re-
lationships are considered as negative pairs. This
approach allows us to obtain more pairwise rela-
tionships in one sample compared to image-level
CL approach, e.g., CLIP (Radford et al., 2021b).

For CL, we use a 2-layer Multi-Layer Perceptron
(MLP) fθ : Rd 7→ Rd∗ , where d∗ is a hyperparam-
eter for a dimension of a common space. Most
settings are similar to those of Khosla et al. (2020).
The CL objective can be expressed as follows:

−
l∑

i=1

log
exp(s(vi, v̂i)/τ)∑l

j=1 j ̸=i exp(s(vi, v̂j)/τ)
, (1)

where the sets {vi|1≤i≤l} and {v̂i|1≤i≤l} rep-
resent features stacked in the order they are sam-
pled as positive pairs from z and ẑ, respectively.
Here, l denotes the number of feature evidences
and τ is the temperature parameter modulating
the softmax sharpness. The function s(x,y) =
cos(f θ(x), f θ(y)) computes the cosine similarity
between its vector inputs, using an MLP param-
eterized by θ. This CL objective encourages the



alignment of the embeddings from both encoders
in the feature space. We validate the effectiveness
of this objective in our experiments and analyses
(§ 4).

3.2 Integration of Cream and LLMs

Large language models (LLMs) have demonstrated
state-of-the-art performance on a wide range of
natural language processing tasks, such as text clas-
sification, question answering, and machine trans-
lation. However, LLMs often face limitations in
understanding and responding to context-specific
language. To address this issue, we integrate Cream
with LLMs following a similar approach proposed
in the previous work, BLIP-2 (Li et al., 2023). The
features extracted by the Cream decoder serve as
a visual input prompt for the LLM, which subse-
quently generates a text response for a given input
image and question.

To enhance this integration, we adopt the learned
query mechanism introduced in BLIP-2 (Li et al.,
2023). This mechanism utilizes a set of trainable
embeddings as input for the Cream decoder to ex-
tract fixed size hidden states that are subsequently
fed to the LLM. If available and appropriate, the
natural language query is simultaneously input to
the Cream decoder, enabling the decoder’s last hid-
den states for the learned queries to encode more
valuable information for answering the question.
In multi-turn QA scenarios, we refrain from in-
putting the question to the Cream decoder, as its
hidden states are not solely used for answering a
single question. This approach allows the Cream
and LLM combination to play more diverse roles
in real-world applications.

Alternative methods have explored inputting vi-
sual embeddings and OCR tokens directly to the
LLM (Li et al., 2023; Dai et al., 2023). However,
these approaches are unsuitable for real-world ap-
plications due to their high computational cost. For
example, answering questions in DocVQA (Tito
et al., 2021) requires an average of nearly 400 and
a maximum of 4,000 OCR tokens (See Section 4.3
and Figure 7). By incorporating the learned queries
mechanism and considering the application context,
the integration of Cream and LLMs becomes more
flexible, enabling the LLM to focus on specific as-
pects of visual input while generating accurate and
contextually appropriate responses. This approach
not only enhances the LLM’s understanding of vi-
sual context but also reduces the computational

cost, as the learned queries can efficiently extract
relevant information from input images.

3.3 Model Training

3.3.1 Training Tasks
Text Read Building upon the text reading pre-
training task for visual document understanding
models proposed by Kim et al. (2022), we utilize a
large number of visual corpora (image and text in-
formation pairs) to train Cream for modeling texts
within images. Due to the introduction of an auxil-
iary encoder, we adapt the task by replacing some
OCR tokens with mask tokens when inputting OCR
results to the auxiliary. This task shares similarities
with the masked language modeling in UL2 (Tay
et al., 2022). However, our task simultaneously
employs the image modality and aims to read the
entire text in the image, rather than just the masked
tokens.

Masked Text Prediction To enhance Cream’s
comprehension of the overall context within the im-
age, we introduce a masked text prediction (MTP)
task for predicting hidden texts in the image. We
randomly mask some OCR boxes in the image, and
the objective is to predict the letters in the com-
pletely obscured areas of the image. This task can
be interpreted as extending the masked language
modeling task (Tay et al., 2022) to the visual do-
main.

Captioning The image captioning task requires
the model to generate a natural language descrip-
tion of the image that captures the overall scene and
object details. This task enhances Cream’s ability
to understand the overall situation in the image and
recognize objects. The generated captions provide
a comprehensive representation of the image con-
tent, which is crucial for visually-situated language
understanding tasks.

Question Answering Question answering (QA)
involves training Cream to process an image and
a natural language question, then generate an ap-
propriate answer. By incorporating this task, the
model learns to focus on specific image regions and
text information to provide accurate answers. This
capability further improves Cream’s understand-
ing of the relationships between visual and textual
information in the image.

Question Generation Question generation (QG)
requires the model to generate a question sentence
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“Read all texts from the 
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Captioning
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Figure 4: Unified Multitask Model Training Framework.

corresponding to a given answer text in the context
of an image. This task promotes the model’s ability
to reason about the image content and answer text,
facilitating the model’s QA ability. QG training
can be done by simply swapping the question and
the answer.

3.3.2 Unified Multitask Training

The tasks discussed so far—text reading, MTP, im-
age captioning, question answering, and question
generation—are interrelated and can be addressed
using similar approaches. Ultimately, they involve
extracting a text sequence based on a given task
command query when provided with an input im-
age and feature evidence within the image. For in-
stance, the query for text reading could be “please
read all texts in the image from the top left to
bottom right”, while for masked LM, it could be
“guess all hidden texts in the masked area”. For im-
age captioning, queries like “please describe the im-
age” or “explain the image” can be used. Figure 4
illustrates our unified Cream training framework,
where natural language prompt (query) and image
are input and desired answer texts are generated
for all tasks. Full prompt examples are available in
Appendix A. Our prompt differs from other docu-
ment understanding methods such as Donut (Kim
et al., 2022) and UDOP (Tang et al., 2022), which
employ single task-specified prompt. We believe
that our Cream trained with natural language-based

prompts can be more seamlessly integrated into
LLMs.

We train the model using a combination of su-
pervised fine-tuning VQA datasets and pre-training
datasets for text reading, MTP, and image caption-
ing. Some QA data demand more reasoning than
merely reading the text in the image or describing
the situation. Consequently, we restrict the use of
such fine-tuning QA benchmarks in the early stage
of training and increase the proportion of the QA
data after the middle stages.

3.3.3 Training Objective

The training of the Cream consists of two main
objectives: language modeling and contrastive loss.
These objectives aim to align the embeddings gen-
erated by the vision and auxiliary encoders and im-
prove the model’s overall performance in visually-
situated language understanding tasks.

The language modeling objective focuses on
generating a sequence of token embeddings con-
ditioned on the image. Cream employs a sim-
ple cross-entropy loss to measure the difference
between the predicted token sequence and the
ground truth. In line with the original Trans-
former (Vaswani et al., 2017), we utilize a teacher-
forcing scheme (Williams and Zipser, 1989) during
the training process. This strategy involves using
the ground truth as input instead of the model’s
output from a previous time step, ensuring that the



model learns from accurate contextual information.
The CL objective encourages the alignment of

the embeddings produced by the vision and aux-
iliary encoders in the feature space. This align-
ment is crucial for effectively assimilating OCR
and object information alongside image informa-
tion within the decoder. To achieve this, we define
positive and negative pairs based on the location
information of feature evidence in the image. Posi-
tive pairs consist of relationships where the feature
evidence and the corresponding image patch share
semantically similar information, while negative
pairs comprise all other relationships. The CL ob-
jective was previously defined in Equation 1.

To combine both objectives during Cream’s train-
ing, we use a weighted sum of the language model-
ing loss (LLM) and the CL loss (LCL), as follows:

L = LLM + λLCL, (2)

where λ is a hyperparameter that controls the
relative importance of the two objectives. By in-
corporating this combined training objective, we
ensure that the model effectively aligns the informa-
tion encoded by both encoders and achieves high
performance in visually-situated language under-
standing tasks, as validated in our experiments and
analyses (§ 4).

3.3.4 Further Learning to Prompt LLMs
We adapt the integration method from BLIP-2 (Li
et al., 2023) in order to align it with the objectives
and architecture of Cream. The Q-former architec-
ture suggested in BLIP-2 is not implemented in this
work. Instead, our Cream decoder functions as a
soft visual prompter. The transformed hidden states
serve as a soft visual prompt, conditioning the LLM
on the visual representation extracted by Cream’s
decoder. Throughout the integration process, we
freeze both the LLM and Cream’s encoders, ensur-
ing that only the Cream decoder is updated via gra-
dient descent-based training. In accordance with
the BLIP-2 methodology, a new learnable parame-
ter, referred to as the vision query, is introduced to
extract a fixed number of vectors that act as a soft
visual prompt. Given a desired number of vectors
k, we create k new token embeddings, which serve
as the vision queries. These queries are input into
Cream’s decoder, and the resulting output vectors
are used as the visual prompt.

Upon integration with the LLM, Cream’s de-
coder no longer functions as an autoregressive de-

coder. To address this, we modify its attention
mechanism to allow bi-directional attention flow.
This adjustment enhances the decoder’s capability
to effectively combine Cream’s understanding of
visual information with the LLM’s language pro-
cessing abilities, resulting in a more efficient model
for visually-situated language understanding tasks.

4 Experiments and Analyses

In this section, we provide in-depth analyses of
Cream. We first explain the details of model train-
ing (§ 4.1), present the benchmark results including
ablations (§ 4.2), and visualization (§ 4.3).

4.1 Experimental Setup

4.1.1 Training Datasets
Our model is trained on a diverse range of datasets,
which target text reading, MTP, image captioning,
question answering (QA), and question generation
(QG) tasks. We provide an overview of the relevant
datasets and their statistics in Table 1, and present
representative examples from each of these datasets
in Figure 5.

Text Read and MTP In order to address the
text read and MTP tasks, we utilize the IIT-
CDIP (Lewis et al., 2006) (11M) and WEBVI-
COB (Kim et al., 2023) (30M) datasets. The IIT-
CDIP dataset is a publicly available resource con-
sisting of scanned document images and has been
widely employed in various visual document under-
standing studies. WEBVICOB, on the other hand,
is a recent dataset generator that constructs visual
corpora from Wikipedia dumps. We produced a
30M-element visual corpus1 using WEBVICOB.
Both datasets are well-suited for training text read
and MTP tasks, as they primarily consist of well-
structured text in contrast to other data sources such
as photographs or uniquely structured layouts.

Captioning We use CC3M (Sharma et al., 2018)
(3M) dataset for the image captioning task, which
constitutes a vast collection of web images paired
with textual descriptions. CC3M has been em-
ployed extensively in the pre-training of numerous
existing visual language models.

Question Answering and Question Generation
In order to enhance Cream’s visual document un-
derstanding capabilities, we utilize several widely

1https://github.com/clovaai/webvicob

https://github.com/clovaai/webvicob


IIT-CDIP Webvicob

TextVQA VQAv2ST-VQA OCR-VQA

DocVQA

ChartQA

Q: What is the least difference between 
light blue bar and dark blue bar?
A: 4

Q: Who is the chairman of the 
NUTRITION COMMITTEE?
A: edwin bierman, m.d.

InfographicVQA

Q: what carries the highest 
calories in fruits?
A: bananaConceptual Captions

pop artist performs at the festival in a city.

VisualMRC

Q: Who were the winners of the Ig 
Nobel prize for Biology and Chemistry?
A: The winner of the Ig Nobel prize for 
biology was Dr Johanna van Bronswijk, 
and the winner for Chemistry was Mayu 
Yamamoto.

Wiki. Key-Value QA TydiQA

Q: What is Postal Code? A: 2509

Q: When was the X-Men cartoon 
television series first aired? 
A: October 31, 1992

Figure 5: Training Datasets. This figure illustrates samples from the IIT-CDIP, WEBVICOB, Conceptual Captions
(CC3M), document visual QA benchmarks, as well as general VQA and scene text VQA datasets. Furthermore, it
displays samples from our open-source datasets, Wikipedia Key-Value VQA (WKVVQA) and TydiVQA.

DocVQA InfographicVQA ChartQA

Figure 6: Evaluation Benchmarks. We evaluate mod-
els on ChartQA, InfographicVQA, and DocVQA to
gauge their proficiency in answering queries using im-
age details.

recognized public QA benchmark datasets, in-
cluding ChartQA (Masry et al., 2022), Infograph-
icVQA (Mathew et al., 2022), DocVQA (Tito
et al., 2021), VisualMRC (Tanaka et al., 2021),
DVQA (Kafle et al., 2018), and OCRVQA (Mishra
et al., 2019). Additionally, we take advantage
of STVQA (Biten et al., 2019), TextVQA (Singh
et al., 2019), VizWizVQA (Gurari et al., 2018), and
VQAv2 (Goyal et al., 2017) datasets in order to fur-
ther improve Cream’s scene text comprehension
and general image understanding abilities.

We also introduce two synthetically generated
VQA datasets, TydiVQA and Wikipedia Key-Value
VQA (WKVVQA), depicted in Figure 5. TydiVQA
is developed by extending TydiQA (Clark et al.,
2020) into a multimodal context through associat-
ing each QA sample with its corresponding WE-
BVICOB resource (Kim et al., 2023). WKVVQA

consists of synthetic document images contain-
ing various key-value pairs extracted from the
Wikipedia dump. Both TydiVQA and WKVVQA
will be publicly accessible via our GitHub reposi-
tory.2

4.1.2 Test Datasets
Our models are evaluated using the test sets
of ChartQA (Masry et al., 2022), Infograph-
icVQA (Mathew et al., 2022), and DocVQA (Tito
et al., 2021), in order to gauge their effectiveness in
accurately answering natural language queries re-
liant on a profound understanding and recognition
of various image elements, such as text, objects,
and relationships. A sample of the test datasets
used is depicted in Figure 6.

It is important to note that both Infograph-
icVQA and ChartQA present significant challenges.
ChartQA demands a degree of reasoning ability,
while InfographicVQA is characterized by vast
image sizes, necessitating a thorough comprehen-
sion of the images’ content. It has been reported
that GPT-4 (OpenAI, 2023) employed a chain-
of-thought approach specifically designed for the
ChartQA benchmark.

4.1.3 Configurations
Model Details Our primary vision encoder is
initialized with the weights of OpenCLIP (Rad-
ford et al., 2021b; Ilharco et al., 2021) trained on
LAION (Schuhmann et al., 2022) 2B data. In this
paper, we create and utilize two sizes of Cream

2https://github.com/naver-ai/cream

https://github.com/naver-ai/cream


Dataset Task Size (Images)

IIT-CDIP Text Read / MTP 11M
WEBVICOB Text Read / MTP 30M
CC3M Image Captioning 3M
ChartQA QA / QG 18K (train)
InfographicVQA QA / QG 4K (train)
DocVQA QA / QG 11K (train+val)
VisualMRC QA / QG 9K (train+val)
DVQA QA / QG 200K (train)
OCRVQA QA / QG 146K (train)
STVQA QA / QG 17K (train)
TextVQA QA / QG 25K (train+val)
VizWizVQA QA / QG 15K (train)
VQAv2 QA / QG 83K (train)
TydiQA QA / QG 4K
Wiki. key-value QA QA / QG 800K

Table 1: Statistics of the training datasets.

models. The main model has 18 layers for the pri-
mary vision encoder, 12 layers for the auxiliary
encoder, and 12 layers for the decoder, with the
patch size of 14×14. In contrast, the smaller model
for the ablation study has 9 layers for the vision
encoder, 6 layers for the auxiliary encoder, and 6
layers for the decoder, with the patch size of 32×32.
For the main model, the primary vision encoder is
initialized with ViT-L, while for the small model, it
is initialized with ViT-B (Dosovitskiy et al., 2021).
The auxiliary encoder and the decoder are initial-
ized with the weights of MBart (Liu et al., 2020).
Excluding token embeddings, the total size of the
standalone Cream is 0.6B. For the LLM integra-
tion experiments, we use the 7B size model from
Vicuna (Chiang et al., 2023).

Environment and Training Hyperparameters
Table 2 provides the proportion of multiple tasks
for each training phase. In the first phase, our
main model is trained on 128 A100 GPUs with
a batch size of 384, a fixed learning rate of 1e-4,
and 220K steps. Once the loss has converged to
a sufficient extent, we seamlessly transition to the
next phase by changing the batch proportions and
training hyperparameters. In the second phase, we
use 32 A100 GPUs with a batch size of 96, a cosine
scheduled initial learning rate of 5e-5, and 220K
steps and take a higher proportion for QA. After
sufficient convergence in this phase, we observe
no significant change in QA performance when
training with only QA data, so we conclude the
Cream training with this phase. For integrating
Cream with the LLM, we use the Cream model
that has already completed the training process. As

Phase Task Proportion

Cream-phase1
Text Read (22%), MTP (46%),

Captioning (22%), QA (5%), QG (5%)

Cream-phase2
Text Read (7%), MTP (14%),

Captioning (26%), QA (48%), QG (5%)

LLM Integration QA (100%)

Table 2: Task proportions according to training
phases.

described in Section 3.3.4, the integration process
involves making only the Cream decoder learnable.
During this process, we train the LLM integration
using only QA datasets, as the QA performance
quickly converges. For the integration, our model
with LLM is trained on 128 A100 GPUs with a
batch size of 1024 and 46K steps, using a cosine
scheduled initial learning rate of 1e-4. For the rest
training hyperparameters, we use λ = 0.5, τ =
0.07, d = 1024, d∗ = 128, k = 192, d′ = 4096,
and l = 90 in our experiments.

Off-the-Shelf Detectors During the experiments,
in both training and test phases, we adopt the
CLOVA OCR API3 as a commercial OCR solution
for the OCR module, and we utilize the OWL-ViT4

model from Minderer et al. (2022) as the general
object detector. For the semantic class label texts,
we use the 80 class labels provided by the MS-
COCO dataset (Lin et al., 2014).

4.2 Results
Table 3 displays the performance of diverse
Frozen LLM integration models on the DocVQA,
ChartQA, and InfoVQA benchmarks. Our pro-
posed Cream integration exhibits significant im-
provement over other Frozen LLM integrations
in benchmarks demanding advanced visual under-
standing capabilities.

A key feature of the Cream integration is the
utilization of a fixed-size soft visual prompt, re-
gardless of the number of texts within the image,
which is set to 192 in our main experiments. Un-
like approaches in which all OCR tokens are fed
into the LLM, our method does not depend on ex-
cessively large token lengths (denoted as |OCR|)
for processing document information, thereby en-
hancing efficiency. On average, the DocVQA (Tito
et al., 2021) dataset requires 432 OCR tokens per

3https://clova.ai/ocr/en
4https://huggingface.co/google/

owlvit-large-patch14

https://clova.ai/ocr/en
https://huggingface.co/google/owlvit-large-patch14
https://huggingface.co/google/owlvit-large-patch14


Model Prompt Length Use Auxiliary DocVQA ChartQA InfoVQA

OCR-Vicuna7B (Chiang et al., 2023) |OCR| ✓ 29.2 6.2 13.6
OCR-Vicuna13B (Chiang et al., 2023) |OCR| ✓ 31.4 3.7 23.7
OCR-GPT3.5 |OCR| ✓ 62.4 15.9 26.6
OCR-GPT4 (OpenAI, 2023) |OCR| ✓ 75.9 34.3 25.0
BLIP2-OPT-6.7B (Li et al., 2023) 32 3.7 4.6 11.0
BLIP2xOCR-OPT-6.7B (Li et al., 2023) 32+|OCR| ✓ 6.2 17.5 30.4
BLIP2-FlanT5xxL-11B (Li et al., 2023) 32 8.6 4.4 11.4
BLIP2xOCR-FlanT5xxL-11B (Li et al., 2023) 32+|OCR| ✓ 63.8 18.3 36.6
LLaVA-Vicuna7B (Liu et al., 2023a) 256 5.5 0.5 2.4
LLaVA-Vicuna13B (Liu et al., 2023a) 256 5.9 1.4 3.1

Cream-Vicuna7B (Proposed) 192 ✓ 80.0 61.6 42.4

Table 3: Experimental results for various models on visually-situated language understanding tasks. Cream, when
integrated with the frozen Vicuna, significantly outperforms other LLM integrations with an efficient prompt length.

Model DocVQA ChartQA InfoVQA

BLIP2-OPT-6.7B 3.7 4.6 11.0
BLIP2-FlanT5xxL-11B 8.6 4.4 11.4
LLaVA-Vicuna7B 5.5 0.5 2.4
LLaVA-Vicuna13B 5.9 1.4 3.1

Cream-Vicuna7B w/o Aux 45.8 50.0 22.8

Table 4: Experimental results show that Cream inte-
grated with the frozen LLM notably outperforms other
models when the vision information is only employed
as an input.

sample, with a maximum of 3292 tokens in Vicuna
model (Chiang et al., 2023). Further details can be
found in Section 4.3.2.

Considering real-world applications, we also
evaluate our approach in scenarios where off-the-
shelf OCR and object detectors are not available.
As illustrated in Table 4, our method yields out-
standing performance improvements compared to
preceding strategies. We confirm that Cream effec-
tively extracts task-relevant information in text-rich
tasks within the vision encoder, surpassing the ex-
isting methods.

Moreover, we assess the standalone performance
of Cream, as depicted in Table 5. We include a se-
lection of recent state-of-the-art models as points
of comparison. Although Cream’s standalone per-
formance is marginally inferior to specialized stan-
dalone models, it demonstrates comparable results
to contemporary state-of-the-art Visual Document
Understanding models. Interestingly, we notice
enhanced performance when combining the LLM
with the standalone Cream model. Tables 3 and 5
verify that Frozen LLMs can achieve performance
levels akin to state-of-the-art visual document un-
derstanding models, despite not directly observing

Figure 7: Visualization of LLM Token Consumption
induced by OCR. The number of required OCR tokens
(|OCR|) are shown. We use the DocVQA dataset (Tito
et al., 2021) and tokenizers of Vicuna (Chiang et al.,
2023) and FlanT5 (Chung et al., 2022).

the images or OCR results and relying on only
fixed-size visual prompt.

Overall, the experimental results underscore the
effectiveness of the Cream model and its integra-
tion with Vicuna7B for visually-situated text-rich
image understanding tasks. Our proposed method
successfully merges the strengths of visual under-
standing and language processing, culminating in
a potent model that outperforms existing LLM in-
tegrations and exhibits competitive performance
against cutting-edge standalone models across the
evaluated benchmarks.

4.3 Analyses

4.3.1 Impact of Contrastive Learning and
Auxiliary Encoding Scheme

We examine the influence of the auxiliary encoder
and CL on the Cream model’s performance. The
results outlined in Table 6 lead to several observa-
tions:



Model Aux DocVQA ChartQA InfoVQA

BROS ✓ 68.1 - 24.8
Donut 67.5 41.8 21.7
Pix2StructBase 72.1 56.0 38.2
Pix2StructLarge 76.6 58.6 40.0
LayoutLMv3Base ✓ 78.8 - -
LayoutLMv3Large ✓ 83.4 - 45.1
UDOP ✓ 84.7 - 47.4

Cream ✓ 81.3 61.2 39.8

Table 5: Experimental results for standalone mod-
els. The standalone Cream shows comparable results to
the recent VDU models, including BROS (Hong et al.,
2022), Donut (Kim et al., 2022), Pix2Struct (Lee et al.,
2022), and UDOP (Tang et al., 2022).

Model DocVQA ChartQA InfoVQA

CreamSmall 67.8 54.8 29.9
- disable aux. at test 38.9 41.4 13.1
Diff. 28.9 13.4 16.8

CreamSmall w/o CL 65.3 52.7 31.5
- disable aux. at test 7.9 9.8 12.1
Diff. 57.4 42.9 19.4

Donut-like 49.8 47.6 16.8
Donut-like-Patch1700 60.5 52.2 20.9

Table 6: Ablation study results for CreamSmall. The
table highlights the effect of CL that alleviates the per-
formance gap when the auxiliary information is not
employed.

• The performance difference between
CreamSmall and its vision-only counterpart
(i.e., donut-like) underlines the significance
of employing the auxiliary encoder, which
integrates OCR and object detection results.
This result supports the proposed approach’s
effectiveness for incorporating supplementary
information to bolster visual understanding.

• Comparing models with and without CL high-
lights the effectiveness of the proposed CL
method. In the absence of CL, the primary
vision encoder is inadequately trained and uti-
lized during the inference stage, causing re-
duced performance. The relatively smaller
performance discrepancy in the CL setting
exemplifies CL’s capacity to thwart feature
collapse or bias, establishing its importance
in Cream’s overall design.

• The gap between (CreamSmall)-(disable aux.
at test) and (CreamSmall w/o CL)-(disable aux.
at test) indicates that the proposed CL mech-
anism contributes to balancing the two en-

coders, leading to more robust performance,
even when auxiliary information is absent.
This feature is crucial for real-world environ-
ment applications.

• The donut-like-patch1700 model, which ad-
justs the donut-like model to accommodate
larger images, increases the patch number
from 1024 to 1700 during the training phase.
Although this modification necessitates sub-
stantial computational resources, it still re-
sults in lower scores than the base CreamSmall
model. This observation implies that bridging
the performance gap between models with and
without auxiliary encoding by merely scaling
the vision encoder is challenging.

These analyses establish the effectiveness of
leveraging the auxiliary encoder and CL within
the Cream model. These components play a piv-
otal role in enhancing the model’s performance on
visually-situated language understanding tasks and
contribute to its success in comparison to other
state-of-the-art models.

Besides the quantitative analysis, we conduct a
visualization analysis to qualitatively comprehend
the importance of CL in achieving Cream’s high
performance. Figure 8 (a) presents the results of
Principal Component Analysis (PCA) on the com-
mon space of the embeddings generated by the
two encoders. The PCA results for the space with
CL display improved alignment, particularly for
the first principal component, which seems to rep-
resent the difference between the encoders. By
excluding the first principal component and visu-
alizing with the second and third components, we
observe that each embedding exhibits enhanced
alignment in the common space of Cream with CL,
and semantically similar embeddings cluster more
effectively.

Figure 8(b) presents the outcomes obtained from
randomly selecting two embeddings in the shared
embedding space, computing their cosine similar-
ity, and constructing histograms. In accordance
with the literature, a Gaussian distribution is ex-
pected for the histogram when dealing with ran-
dom (unit) vectors in the embedding space (Spruill,
2007). The observed results imply that the embed-
ding space, when subjected to contrastive learning,
demonstrates a wider distribution of embeddings,
suggesting a potential enhancement in the quality
of the embedding space. The red line in the fig-
ures represents the Gaussian distribution with the
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Figure 8: Visualization of Contrastive Feature Alignment Effects in the Common Feature Space.

minimal KL divergence for each histogram distri-
bution. Specifically, the respective distributions are
N (0, 1/140) for the contrastive learning case and
N (0, 1/3) for the non-contrastive learning-applied
case.

Through the aforementioned analysis, we infer
that when CL is implemented, (i) the embeddings
from the two encoders demonstrate better align-
ment, and (ii) they are more randomly (broadly)
distributed within the embedding space. These
characteristics appear to contribute significantly to
the Cream model’s performance improvement.

4.3.2 On Efficient LLM Integration

In addition to the previously discussed analyses,
we would like to emphasize the efficiency of the
Cream integration with LLM compared to other
approaches. A significant advantage of the Cream
model is its reduced computational cost due to the
smaller visual prompt length than feeding all OCR
tokens. To elaborate, the complexity per layer
of attention can be mathematically expressed as
O(n̄2d̄), where n̄ represents the sequence length
of tokens, and d̄ denotes the hidden dimension of
model. Particularly for LLMs (e.g., 175B) with
substantial d̄ values and large number of attentions,
a decrease in the input token length yields a sub-
stantial reduction in complexity. This efficiency
allows the model to achieve superior performance
while consuming fewer resources.

Figure 7 illustrates the token consumption of the
LLM when directly inputting OCR to the model.
The figure shows the number of OCR boxes and the

resulting OCR tokens on the DocVQA dataset (Tito
et al., 2021). We visualized tokenizers of Vi-
cuna (Chiang et al., 2023) and FlanT5 (Chung et al.,
2022).

As seen in the Figure 7, directly inputting OCR
to the LLM would induce high computational cost.
In the analyses with DocVQA (Tito et al., 2021)
dataset, the mean number of required tokens to
input the OCR output is 432 and 361 for Vicuna
and FlanT5, respectively, which are considerably
large. In contrast, the Cream integration with
LLM offers a more efficient solution by reduc-
ing the visual prompt length, allowing the model
to achieve better performance while consuming
fewer tokens and computational resources. This
efficiency highlights the potential of the Cream
model in visually-situated language understanding
tasks, especially when compared to other LLM
integration approaches.

4.3.3 On Qualitative Assessment

In this study, we aim to investigate the benefits of
incorporating an LLM with a comprehensive under-
standing of illustrations and reasoning capabilities
for samples requiring such an approach. To this
end, we examine various samples and conducted
a qualitative assessment. Our results indicate that
the integrated LLM significantly improved com-
prehension, which we believe contributed to the
improved performance observed in the quantitative
evaluation. Detailed working examples from the
qualitative evaluation can be found in Appendix B.



5 Conclusion

In this work, we introduce Cream, Contrastive
reading model designed to address the limitations
of existing LVLMs in text-rich visual tasks. The
model features a streamlined and practical archi-
tecture that seamlessly integrates a general vision
encoder with auxiliary encoders and innovative
training techniques, including a contrastive feature
alignment method. Through extensive experiments
across various visually-situated language under-
standing tasks, we demonstrated Cream’s state-of-
the-art performance in tasks requiring text infor-
mation extraction from document images. Fur-
thermore, we showcased the seamless integra-
tion of Cream with LLMs and provided valuable
resources to the research community by open-
sourcing Cream’s codebase and the newly-built
VQA datasets, TydiVQA and WKVVQA. Our
work paves the way for new developments and
breakthroughs in the visually-situated language un-
derstanding domain.
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Ethics Consideration

In this study, we present Cream, a novel approach
that integrates LLMs within the well-established
paradigm of large-scale pre-training followed by
fine-tuning. Consequently, our method inherits
the ethical concerns commonly associated with
existing LLMs, such as biases present in pre-
training data and privacy considerations. To mit-
igate these issues, we recommend employing a
stringent and thorough protocol during the cura-
tion of pre-training data, especially for applications
designed for public utilization. Our model’s pre-
training is conducted using controlled public data
sources.

A critical aspect of document processing is the
management of privacy-sensitive documents, such
as identification cards. It is imperative to exercise
caution in ensuring that such samples are excluded
from training datasets to prevent potential privacy
breaches and unintended consequences. This high-
lights the necessity for responsible data handling
practices in the development of LLMs for docu-
ment processing.

Moreover, our current approach relies on the di-
rect output of the autoregressive decoder as the final
output, which offers the advantage of eliminating
the need for complex post-processing. However, in
the context of ethical considerations, it may be pru-
dent to explore the incorporation of post-processing
techniques designed to address potential biases and
privacy issues. Such methods could provide an
additional layer of protection, ensuring that the
outputs generated by the model align with ethical
guidelines and best practices in the field of Natural
Language Processing.
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A Insights on Prompt Engineering

A.1 OCR-LLM Prompt Variations

We examined the impact of various prompts on
model performance in the context of the DocVQA
dataset (Tito et al., 2021), using OCR tokens com-
bined with LLMs. Our investigation revealed that
integrating more specific conditions into a prompt
generally led to better performance. For extrac-
tion tasks in which the correct answer is present
within the OCR tokens, specifying a condition that
the response should be sourced from the OCR to-
kens resulted in substantial performance improve-
ments. Interestingly, the performance differed
across LLMs, even when using the same prompt.

Using the Vicuna model (Chiang et al., 2023),
we could eliminate unnecessary sentences and
words from generated results by implementing con-
ditions such as "(please output answer text only)."
In this case, the term "OCR tokens" proved more

advantageous than alternatives like "Images," "Im-
age Results," or "OCR Outputs." For certain bench-
marks similar to chartQA, constraining the length
and number of words in the correct answer proved
effective. Adding a phrase such as "Answer:" at
the end of the prompt facilitated addressing the QA
task. As LLMs frequently generate questions as
part of their responses, offering a condition that
omits any question-related text is advantageous
(see Table 8).

Prompt5 exhibited the best performance across
all models consistently, as highlighted in Table 7.

Model P1 P2 P3 P4 P5

OCR-Vicuna7B 25.6 19.2 20.1 6.4 28.3
OCR-Vicuna13B 28.2 24.8 29.5 7.5 29.0
OCR-GPT3.5 50.1 60.4 47.9 17.9 60.5
OCR-GPT4 52.1 63.8 60.2 30.9 70.4

Table 7: Results by prompt The evaluation metric is
ANLS, measured after 500 samples on the validation
set.

A.2 Image-OCR-LLM Prompts

Table 9 displays a prompt that addresses a QA task
given an image tensor, OCR tokens, and a ques-
tion. The LLaVA model (Liu et al., 2023a) ini-
tially processes a system message and progresses
through two conversation turns. However, the ac-
tual number of turns is contingent on the data used
for inference. As this model was trained to gener-
ate detailed and descriptive output, it is helpful to
present an example of a concise answer in the first
turn.

In the case of the BLIP-2 model (Li et al., 2023),
we refrained from imposing any special conditions,
as it was designed to generate succinct answers.
We first provided the image tensor, followed by the
question, and then the answer. Moreover, we ob-
served no significant performance disparities based
on the image tensor.

It is important to note that the prompts used in
our experiments may not be optimal for our model
and data, and that alternative prompts could result
in varying performance levels.

A.3 Cream Query Variations

Table 10 lists the queries employed for address-
ing individual tasks during Cream model training.
Instead of using a single query for all tasks, we ran-
domly sampled an array of query types to enhance
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No Prompt

1 Image OCR Result: {ocr tokens} / Question: {question} /
+ (please output answer text only)
+ (with no more than five words)
+ Answer:

2 Image OCR Result: {ocr tokens} / Question: {question} /
+ (please output answer text only)
+ (Limit your answer to 50 characters or less)
+ (Answers should not include question text)
+ Extact Answer text in OCR Result:

3 Image OCR Result: {ocr tokens} / Question: {question} /
+ (please output answer text only)
+ (with no more than ten words)
+ (Answer should not include question text)
+ (The answer text must be included in the OCR text)
+ Short Answer:

4 OCR tokens: {ocr tokens} {question}
OCR tokens: {ocr tokens} Question: {question}
OCR tokens: {ocr tokens} {question} A short answer to the question is
OCR tokens: {ocr tokens} Q: {question} A:
OCR tokens: {ocr tokens} Question: {question} Short answer:
OCR tokens: {ocr tokens} Given the image, answer the following question with no more than three words. {question}
OCR tokens: {ocr tokens} Based on the image, respond to this question with a short answer: {question}. Answer:
OCR tokens: {ocr tokens} Use the provided image to answer the question: {question} Provide your answer as short as possible:
OCR tokens: {ocr tokens} What is the answer to the following question? "{question}"
OCR tokens: {ocr tokens} The question "{question}" can be answered using the image. A short answer is

5 OCR tokens: {ocr tokens} / Question: {question} /
+ (Please output answer text only)
+ (With no more than 10 words)
+ (The answer must be a word that exists within the OCR tokens.)
+ Answer:

Table 8: Inference prompt for OCR-LLM The prompts for DocVQA (Tito et al., 2021). prompt4 are adapted
from InstructBLIP (Dai et al., 2023).

the model’s generalization capacity.
While the prompts for Task Reading, Masked

LM, and Captioning tasks are relatively simple
sentences, the placement of questions and answers
in the prompts for the QA and QG tasks proved to
be crucial. In our study, we mostly positioned them
at the end of the prompt.

All prompts consist of a singular sentence struc-
ture and are no more than 100 characters long,
excluding the question and answer in QA and
QG tasks, respectively. The prompts used in
Cream Training emphasize employing concise and
straightforward sentences as a basic principle.

B On Working Examples

Figure 9 shows the working examples for ChartQA
benchmarks. In Infographic VQA, we can also see
that cream synthesize information from infograph-
ics and utilize knowledge LLM learnt and make
inferences, but also utilize information previously
learned. Figure 10 shows the working examples for
ChartQA benchmarks. In Chart QA, it shows an im-

provement in the ability to identify elements within
a graph and perform numerical operations between
the information on each element by integrating an
LLM.
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Model Prompt

LLaVA (Liu et al., 2023a) You are LLaVA, a large language model trained by UW Madison WAIV Lab.
+ You are able to understand the visual content that the user provides,
+ and answer userś question using image and natural language.
+ Follow the instrutions carefully and provide answer
+ text only without question included, less than five words

###Human: What is the type of image?
+ (please output answer text only without question and explanation)
+ (with no more than five words)

###Assistant: The answer is a document image.

###Human: {question} {image tensor}

###Assistant:

BLIP-2 (Li et al., 2023) {image tensor} Question: {question} Answer:
{image tensor} OCR tokens: {ocr tokens} Question: {question} Answer:

Table 9: Inference prompt for Image-OCR-LLM The prompts for DocVQA (Tito et al., 2021). We used a single
prompt for each model.
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Task Queries

Text Reading Read all texts.
Read all texts in the image.
Read all characters in the image.
Given the image, read all texts.
Given the image, read all characters.

Masked LM Read masked texts.
Read masked texts in the image.
Given the image, read masked texts.
Read all hidden texts that are covered by the mask area.

Captioning Explain the image.
Use a few words to illustrate what is happening in the picture.
Using language, provide a short account of the image.
Please provide a short depiction of the picture.
Could you use a few words to describe what you perceive in the photo?
Can you briefly explain what you see in the image?
Briefly describe the content of the image.
Provide a description of what is presented in the photo.
Write a description for the photo.
Write a short description for the image.

QA {query}
Q: {query}
Question: {query}
Given the image, answer the following question. {query}
Based on the image, respond to this question with a short answer: {query}.
Use the provided image to answer the question: {query}. Provide your answer as short as possible.
What is the answer to the following question? "{query}"
The question "{query}" can be answered using the image.

QG Given the image, generate a question whose answer is: {answer}.
Based on the image, provide a question with the answer: {answer}.
Given the visual representation, create a question for which the answer is "{answer}".
From the image provided, craft a question that leads to the reply: {answer}.
Considering the picture, come up with a question where the answer is: {answer}.
Taking the image into account, generate a question that has the answer: {answer}.

Table 10: Task-specific queries (prompts) used in Cream training. The prompts for Captioning, QA, and QG
tasks are adapted from BLIP-2 (Li et al., 2023).



BLIP-2 Ours (Cream) Ours (Cream + LLM)

20142013 2011

BLIP-2 Ours (Cream) Ours (Cream + LLM)

UKFrance US

Q: Which country does the Dark green represent?Q: When does the line have the sharpest increase?

BLIP-2 Ours (Cream) Ours (Cream + LLM)

PPLDPE PP (Polypropylene)

BLIP-2 Ours (Cream) Ours (Cream + LLM)

[1990, 2011, 5, 10]1981 1990

Q: When is the average value of all four gaps highest?

Idxes:
(17, 223)

(122, 371)

리즈닝 체리피킹 
(Chart VQA)

Q: What type of plastic was most produced?

Figure 9: Working Examples for ChartQA Benchmarks.



리즈닝 체리피킹 
(Info VQA)

BLIP-2 Ours (Cream) Ours (Cream + LLM)

New YorkMaine New Hampshire

BLIP-2 Ours (Cream) Ours (Cream + LLM)

Australiaengland India

Q: Who won the 2011 ICC Cricket World Cup?
Q: Which state in the north-eastern region of the U.S. has 

greater than 6% of year-over-year home price gain 
- New York, Vermont, New Hampshire, Maine?

BLIP-2 Ours (Cream) Ours (Cream + LLM)

Eastern and 
South-East Europe AsiaWESTERN AND of 

CENTRAL EUROPE

BLIP-2 Ours (Cream) Ours (Cream + LLM)

73%47% are travelling 53%

Q: What percentage are not traveling by themselves?Q: Which continent has 
the largest consumption of opium?

Idxes:
(?, 223)
(52, 55)

Figure 10: Working Examples for InfographicVQA Benchmarks.


