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ABSTRACT

This paper presents a context key/value compression method for Transformer lan-
guage models in online scenarios, where the context continually expands. As the
context lengthens, the attention process demands increasing memory and compu-
tations, which in turn reduces the throughput of the language model. To address
this challenge, we propose a compressed context memory system that continually
compresses the accumulating attention key/value pairs into a compact memory
space, facilitating language model inference in a limited memory space of com-
puting environments. Our compression process involves integrating a lightweight
conditional LoRA into the language model’s forward pass during inference, with-
out the need for fine-tuning the model’s entire set of weights. We achieve efficient
training by modeling the recursive compression process as a single parallelized
forward computation. Through evaluations on conversation, personalization, and
multi-task learning, we demonstrate that our approach achieves the performance
level of a full context model with 5× smaller context memory size. We further
demonstrate the applicability of our approach in a streaming setting with an un-
limited context length, outperforming the sliding window approach. Codes are
available at https://github.com/snu-mllab/context-memory.

1 INTRODUCTION

Transformer language models have exhibited exceptional language processing capabilities, achiev-
ing remarkable results in various applications (Vaswani et al., 2017). In particular, the attention
mechanism, which encompasses the entire context window, enables the language models to respond
with a nuanced understanding of context. With this contextual understanding, services like ChatGPT
or Bard can generate responses customized to individual users through online interactions (OpenAI,
2023; Manyika, 2023). In this online scenario, the context used for language model inference accu-
mulates over time, raising an important challenge in efficiently handling this growing context.

A straightforward approach is to deal with previous contexts as a prompt, which leads to a continual
increase in inference time and memory usage due to the growing length of contexts. Alternately,
caching the attention hidden states of Transformer would be impractical (Dai et al., 2019), as the
caching capacity and attention costs increase with the accumulation of contexts. Recent studies pro-
pose compressing contextual information into concise sequences of token embeddings or attention
keys/values (denoted as KV) (Chevalier et al., 2023; Mu et al., 2023). However, those methods
primarily focus on fixed-context scenarios and are not designed for dynamically changing contexts.
Thus, they still face inefficiency and redundancy when dealing with accumulating contexts.

In this paper, we propose a novel language model framework incorporating a compressed context
memory system for efficient online inference (Figure 1). Our memory system is capable of dynamic
updates during online inference with minimal memory and computation overhead. To this end, we
optimize a lightweight conditional LoRA (Hu et al., 2022), enabling language models to construct a
compressed attention KV memory of contextual information through the forward computation pass.
On the other hand, dynamic memory updates require a recursive context compression procedure,
which leads to training inefficiencies. To address this challenge, we propose an efficient training
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Figure 1: Main concept of online inference systems. Left: Conventional online inference ap-
proach. Right: The proposed system with compressed context memory. The colored boxes represent
attention keys/values (or input tokens) required for Transformer inference. The new context refers
to the sequence comprising an input and a model output from the preceding interaction.

Table 1: Analysis of inference throughput on the MetaICL dataset (Min et al., 2022) at time step 16
with LLaMA-7B and FP16 precision (Touvron et al., 2023). We measure throughput using batch
processing on a single GPU. CCM-{concat,merge} refers to our proposed method.

A100 PCIe 80GB RTX 3090 24GB
Full context CCM-concat CCM-merge Full context CCM-concat CCM-merge

Throughput (sample/sec) 5.3 24.4 69.9 3.5 18.6 50.7
Maximum batch size 60 300 950 10 50 150
Context KV length 800 128 8 800 128 8
Performance (Accuracy %) 70.8 70.0 69.6 70.8 70.0 69.6

strategy that unrolls the recursive context compression procedure and processes the recursive proce-
dure in parallel. In the inference phase, language models utilize the compressed memory to generate
responses to subsequent input queries with reduced attention operations and memory.

Our approach offers several advantages compared to existing efficient context processing meth-
ods: 1) Unlike approaches that propose new attention structures such as the Linear Transformer
(Katharopoulos et al., 2020), our method simply involves the integration of lightweight adapters
to existing Transformer language models, leveraging the weights of pretrained models. 2) Unlike
fixed-context compression techniques such as Gisting or ICAE (Mu et al., 2023; Ge et al., 2023),
our approach is able to dynamically compress newly added context with minimal computational
overhead. 3) In contrast to methods that recurrently compress context into token embeddings, such
as RMT or AutoCompressor (Bulatov et al., 2022; Chevalier et al., 2023), our approach focuses on
compressing attention keys/values, enabling a fully parallelized training process. Notably, our ap-
proach achieves a training speed that is 7× faster than the mentioned approaches (Table 8) and does
not require additional forward computations for the compressed token embeddings during inference.

Our online compression framework has a wide range of applications, including conversation, per-
sonalization, and multi-task learning. Notably, by compressing continuously provided dialogues,
user profiles, and task demonstrations, our approach enables the language model to perform online
inference with reduced memory usage and attention costs. To substantiate our claims, we evaluate
our system across diverse datasets, including DailyDialog, LaMP, and MetaICL (Li et al., 2017;
Salemi et al., 2023; Min et al., 2022). Through empirical analyses, we demonstrate that our method
excels in both efficiency and performance compared to established context compression baselines.
In particular, our method achieves equivalent performance with only 1/5 of the context memory
required when using the full context (Figure 6). This enhanced memory efficiency translates into
substantial improvements in language model throughput when using batch processing on memory-
constrained GPUs (Table 1). Finally, we demonstrate the efficacy of our approach in a streaming
setting with an unlimited context length, outperforming the sliding window method (Figure 8).

2 PRELIMINARY

Target scenario and notation Let T denote a space of texts. We focus on the online inference
scenario, aiming to predict the output O(t) ∈ T based on the input I(t) ∈ T and the accu-
mulated context C(t) = [c(1), . . . , c(t)] for time step t ∈ [1, . . . , T ], where T ∈ N represents
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Table 2: Illustrative instances of online inference scenarios.

Application Dataset Context C(t) Input I(t) Output O(t)

Conversation DailyDialog (Li et al., 2017) Dialogue history User query Reply
Personalization LaMP (Salemi et al., 2023) User profiles User query Recommendation
Multi-task learning MetaICL (Min et al., 2022) Task demonstrations Problem Answer

the maximum number of time steps. Here, c(t) ∈ T denotes a newly integrated context at time
step t, which comprises the interaction results from the preceding time step t91, including I(t91),
O(t91), and any additional user feedback. In Table 2, we formulate diverse applications accord-
ing to our target scenario and notations, where each context C(t) contains accumulated information
for a specific identity (e.g., a task or a user). We represent the dataset with multiple identities as
D = {(Ci(t), Ii(t), Oi(t)) | i ∈ I, t ∈ [1, . . . , T ]}, where I denotes an index set of identities. We
randomly split I into a training set Itrain and a test set Itest for experiments.

Context compression Let us consider a pretrained language model fθ : T → R+, which models
the probability distribution over the text space T . A typical approach for predicting output O(t)

involves using the full context C(t) as Ô(t) ∼ fθ(· | C(t), I(t)). However, this approach requires
increasing memory and computation costs over time for maintaining and processing the entire con-
text C(t). One can employ context compression techniques to mitigate this issue, compressing
contexts into a shorter sequence of attention key/value pairs or soft prompts (Mu et al., 2023; Ge
et al., 2023). Given the compression function gcomp, the inference with compressed contexts be-
comes Ô(t) ∼ fθ(· | gcomp(C(t)), I(t)), where |gcomp(C(t))| ≪ |C(t)|. It is worth noting that
existing context compression methods mainly focus on compressing a fixed context C̄ that is re-
peatedly used as a prompt (Mu et al., 2023; Ge et al., 2023). The objective of the compression is
to generate outputs for a given input I that are similar to the outputs generated when using the full
context: fθ(· | gcomp(C̄), I) ≈ fθ(· | C̄, I).

3 METHODS

In this section, we introduce a novel approach named Compressed Context Memory (CCM), de-
signed for efficient online inference of language models. Our system compresses the given current
context and dynamically updates the context memory by incorporating the compression result. We
further propose a parallelized training strategy to facilitate efficient large-scale optimization.

3.1 COMPRESSED CONTEXT MEMORY

Here, we briefly describe the compression and inference processes at time step t. We denote the
compressed context memory at t as Mem(t) with an initial value of Mem(0) = ∅. When presented
with a context c(t), we condense the information within c(t) into the hidden feature h(t) by using
the compression function gcomp as

h(t) = gcomp(Mem(t91), c(t)). (1)

The compressed context memory Mem(t) is then updated via an update function gupdate as

Mem(t) = gupdate(Mem(t91), h(t)). (2)

Within a limited memory space, Mem(t) stores contextual information up to time t. By encompass-
ing only the input I(t) and memory Mem(t), we conduct memory-efficient inference as

Ô(t) ∼ fθ(· | Mem(t), I(t)). (3)

In the following, we elaborate on the compression and update processes.

Compression We compress context information into attention keys/values as in Compressive
Transformer (Rae et al., 2020) and Gisting (Mu et al., 2023). This compression approach can be
applied within each layer of the language model, providing better parallelization than the auto-
encoding approach (Ge et al., 2023). We introduce a specialized compression token ⟨COMP⟩ and
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Figure 2: The illustration
of the compression process
at time step t. Each col-
ored box symbolizes atten-
tion hidden states.

train the language model to compress context information into the at-
tention keys/values of the ⟨COMP⟩ token, similar to the Gisting ap-
proach.

We assume a Transformer language model fθ has L layers with a hid-
den state dimension of d. To simplify notation, we set a compression
token length of 1. It is worth noting that the compression token can
be extended to arbitrary lengths. Under these conditions, the total size
of the attention keys/values of ⟨COMP⟩ token is 2×L×d. The com-
pression process is illustrated in Figure 2. At each time step t, we ap-
pend ⟨COMP⟩ token to the context c(t) and make the ⟨COMP⟩ token to
have attention on the keys/values of c(t) and the previous memory state
Mem(t91). Utilizing the resulting attention keys/values of the ⟨COMP⟩
token, we obtain the compressed hidden feature h(t) ∈ R2×L×d in
Equation (1).

Memory update We propose memory update functions gupdate that are differentiable and paral-
lelizable during training. In particular, we consider the simplest form of gupdate and verify the effec-
tiveness of our compression framework. Considering various application scenarios, we examine two
types of memory systems: 1) a scalable memory and 2) a fixed-size memory, similar to an RNN.

• For a scalable memory setting, we employ the concatenation function as gupdate. Then Mem(t) ∈
Rt×2×L×d contains the attention key/value pairs associated with ⟨COMP⟩ tokens up to time step t.
We denote our system with the concatenation function as CCM-concat.

• For a fixed-size memory system, we propose a merging function to update information in the
memory. Specifically, we update memory by weighted average: Mem(t) ∈ R2×L×d as Mem(t) =
(1−at)Mem(t91)+ath(t), where a1 = 1 and at ∈ [0, 1] for t ≥ 2. With this recurrence, Mem(t)

becomes Mem(t) =
∑t

j=1 aj
∏t

k=j+1(1 − ak) h(j). In the main experiments, we evaluate an
update method based on the arithmetic average of the compressed states with at = 1/t, i.e.,
Mem(t) = 1

t

∑t
j=1 h(j). We denote our method with the merging function as CCM-merge.

During training, we compute Mem(1), . . . ,Mem(t) in parallel by averaging hidden features
h(1), . . . , h(t) simultaneously. In the online inference phase, we recurrently update the memory
by cumulative average using the prior memory Mem(t91) and current compression result h(t). In
Appendix Table 16, we examine another design choice for the merge function: the exponential mov-
ing average. It is also worth noting that CCM-concat can be interpreted as a process that dynamically
infers coefficients for hidden states h(t) through the attention mechanism.

Parallelized training The direct integration of the compression process of Equation (1) into the
training process poses a challenge as it requires recursive model executions over j = 1, . . . , t.
Such recursive executions prolong training time and amplify back-propagation errors through the
elongated computation graph (Gruslys et al., 2016). To overcome this challenge, we propose a fully
parallelizable training strategy, taking advantage of the Transformer structure.

For training data (C(t), I(t), O(t)) ∈ Dtrain, we insert ⟨COMP⟩ tokens into the accumulated context
C(t), forming the sequence [c(1), ⟨COMP⟩ · · · c(t), ⟨COMP⟩, I(t)]. We then establish memory update
and attention mechanisms, modeling recursive compression processes as parallelized forward com-
putations (Figure 3). In detail, within each layer of a Transformer fθ, we update Mem(j) for j ≤ t
using the attention keys/values of preceding ⟨COMP⟩ tokens, i.e., h(1), . . . , h(j), as in Figure 3 (a).
Following the memory update, we execute the compression procedures for j = 1, . . . , t in parallel
using the masked attention as in Figure 3 (b). As stated in Equation (3), we access the context in-
formation from previous time steps only through memory during online inference. Therefore, we
restrict c(j) to reference only Mem(j91) for j ≤ t and make I(t) exclusively have its attention on
Mem(t). Finally, we compute likelihood fθ(O(t) | Mem(t), I(t)) in Equation (3) using the output
probability obtained at the last token position of I(t). When the token length of O(t) exceeds 1, we
follow the conventional approach by conditioning on the target label O(t) and calculating the loss
for the next tokens (Radford et al., 2019). All these steps take place within a single forward pass of
fθ, and the loss gradients are backpropagated to all tokens across all time steps.
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Figure 3: Illustration of the parallelized training process. In (a), each colored box symbolizes
attention keys/values of memory, compression tokens, and normal text tokens. In (b), gray indicates
that attention is blocked. In the figures, ⟨C⟩ stands for ⟨COMP⟩. At each layer, after the parallel
updates of compressed context memory, the attention operation occurs with the mask in (b). Note
the calculation of Mem(t) occurs after c(t) and its subsequent ⟨COMP⟩ token. Reordering the top
row of (b) to align with this temporal relation yields an autoregressive mask.

Algorithm 1 Training stage for compression

Input: Language model fθ, training set Dtrain
Initialize a conditional LoRA weight ∆θ
Modify the forward pass of fθ to update the compressed context memory
repeat

Sample a mini-batch B ⊂ Dtrain and set B′ = ∅
for (Ci(t), Ii(t), Oi(t)) ∈ B do

Prepare an input xi = [ci(1), ⟨COMP⟩, . . . , ci(t), ⟨COMP⟩, Ii(t)] and a target yi = Oi(t)
B′ = B′ ∪ {(xi, yi)}

end for
Compute loss in eq. (4) on B′ through a single forward pass using the masked attention
Perform a gradient descent step w.r.t. ∆θ

until convergence
Output: ∆θ

Conditional adapter Current compression methods typically rely on fine-tuning a language
model fθ to acquire compression capabilities (Mu et al., 2023). In this approach, the construction
of the memory hinges on the adjustment of the language model parameter θ, allowing us to parame-
terize the memory for context Ci(t) as Memi(t; θ). The objective function for learning compression
capability is then formulated as minθ Et,i∼Itrain [− log fθ(Oi(t) | Memi(t; θ), Ii(t))].

However, this conventional objective can potentially lead the language model to generate an-
swers for input Ii(t) without considering the memory Memi(t; θ). Such overfitting to the in-
put Ii(t) can diminish the importance of compressed context memory during training, which
leads to insufficient training of the compression capability. Specifically, when we measure
the loss without context, Et,i∼I [− log fθ(Oi(t) | Ii(t))], throughout the compression training
process with LLaMA-7B on MetaICL, the loss on training set decreases from 2.69 to 1.84,

W⊗

c(t)

W+∆W⊗

⟨COMP⟩

W⊗

I(t)

Figure 4: Feed for-
ward operations of our
conditional LoRA.

whereas the loss on test set remains 2.59. This observation indicates the
presence of overfitting on inputs.

To address this issue, we introduce separate trainable parameters specif-
ically for compression. To this end, we propose a conditional variant of
LoRA (Hu et al., 2022), which operates exclusively on ⟨COMP⟩ tokens.
This ensures that the trainable parameters allocated for compression solely
influence the model’s compression capabilities (Figure 4). Let W ∈ Rd×d

denote a parameter of a feed-forward layer with a hidden dimension d,
and let ∆W = A⊺B ∈ Rd×d denote a corresponding LoRA weight with
A,B ∈ Rk×d and k ≪ d. For input token x and its corresponding hidden
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Figure 5: Illustration of the compression and inference processes at time step t. The arrow
indicates the process of referencing the keys/values on the left to generate the keys/values on the
right. Here, lc means the expected length of key/value pairs of context c(·), and li denotes the total
length of input and output. We assume that each compression outcome has a length of 1. Notations
at the top of Mem(·) denote the length of key/value pairs corresponding to CCM-concat/-merge.

Table 3: Complexity analysis of approaches in online inference scenario at time step t. Figure 5
presents illustrative explanations for the compression/inference processes with respective notations.

Type Operation Full context Fixed-context compression CCM-concat CCM-merge

Memory Compression - O(tlc) O(t+ lc) O(lc)
Inference O(tlc + li) O(li) O(t+ li) O(li)

Attention Compression - O(tlc) O(t+ lc) O(lc)
FLOPS Inference O(tlcli + l2i ) O(l2i ) O(tli + l2i ) O(l2i )

state xh ∈ Rd, we propose the following conditional forward computation:

x′
h = Wxh +m ·∆Wxh,

where m = 1(x = ⟨COMP⟩). We denote all trainable LoRA parameters of a model as ∆θ. The pa-
rameter ∆θ only affects the formation of compressed context memory, and our compression training
objective with conditional LoRA is

minimize
∆θ

Et,i∼Itrain [− log fθ(Oi(t) | Memi(t; θ +∆θ), Ii(t))] . (4)

We summarize the training procedure of our approach in Algorithm 1.

3.2 COMPLEXITY ANALYSIS

We analyze the complexity of approaches in online inference scenarios in Table 3. In the table,
“full context” refers to the method using full context C(t) during inference, and “fixed-context
compression” refers to the method compressing C(t) as gcomp(C(t)) at each time step (Mu et al.,
2023). In Figure 5, we visualize these methods and introduce notations used in complexity analysis.

Regarding the full context method, the context length at time step t is tlc, resulting in inference
memory complexity of O(tlc + li) and quadratic attention FLOPS of O(tlcli + l2i ). Fixed-context
compression methods offer reduced complexity for inference. However, they process the entire
context C(t) for compression, resulting in memory and FLOPS complexities of O(tlc).

Our method, utilizing compressed context memory for both compression and inference, exhibits
reduced complexity. In the case of CCM-merge, compression complexity depends solely on the
length of context c(t) as O(lc). For CCM-concat, the complexity becomes proportional to the time
step t due to growing memory size over time. Nonetheless, the compression complexity reduces
from O(tlc) to O(t + lc) when compared to fixed-context compression methods. While CCM-
concat exhibits higher complexity than CCM-merge, a language model using CCM-concat achieves
superior performance, offering a trade-off between performance and complexity (Figure 6).

4 EXPERIMENTS

In this section, we present the empirical validation of our approach in online scenarios. Through a
comparison with established compression methods, we demonstrate the effectiveness of our method.
In Section 4.2, we further substantiate our claims through an ablation study and additional analyses.
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Figure 6: Comparison to full context approach on MetaICL test tasks with LLaMA-7B. Peak KV
memory refers to the peak memory space occupied by attention keys/values during compression and
inference processes at each time step. We provide results for other datasets in Appendix, Figure 10.

Datasets and metrics We conduct evaluations using three datasets: MetaICL (Min et al., 2022),
LaMP (Salemi et al., 2023), and DailyDialog (Li et al., 2017). First, MetaICL is a dataset for
multi-task in-context learning, aiming at solving tasks unseen during training. We evaluate on the
high-to-low resources setting, consisting of 61 training tasks and 26 unseen test tasks. The evalua-
tion metric is accuracy for multiple-choice questions. Next, LaMP is a dataset for personalization,
utilizing user profiles to generate personalized recommendations. For evaluation, we measure the
accuracy of multi-choice recommendations on new users unseen during training. Lastly, we as-
sess performance in conversation scenarios using the DailyDialog dataset, comprising sequences
of everyday conversations. We evaluate models by measuring perplexity on actual dialogues. In
Appendix A, we provide more detailed information and statistics for each dataset.

Baselines We implement established fixed-context compression techniques with open-source
codes. Our primary focus is on evaluating the Compressive Transformer (Rae et al., 2020) and
Gisting (Mu et al., 2023), both designed to compress attention hidden states. To suit online in-
ference scenarios, we devise Gisting to compress contexts c(1), . . . , c(t) separately and evaluate
the method using the concatenated compression results for inference. We refer to this approach
as Gisting-online. For the recurrent compression approaches, RMT and AutoCompressor (Bulatov
et al., 2022; Chevalier et al., 2023), we conduct a separate comparison as publicly available trained
models are limited to the OPT architecture (Zhang et al., 2022). We also evaluate the performance
of language models using full context to quantify the performance degradation due to compression.

Training setup We begin by fine-tuning LLaMA pretrained models (Touvron et al., 2023) on each
training dataset. The performance of these models with full contexts establishes the upper-bound
performance of our experiment. We then perform LoRA fine-tuning on these models to learn com-
pression capabilities. To ensure a fair comparison, we employ identical LoRA configurations and
training protocols across all methods considered. All experiments undergo training with a fixed
number of data, ranging from 10k to 250k, depending on the datasets. Individual training runs take
3 to 24 hours on a single NVIDIA A100 with 80GB memory. To account for limited GPU memory,
we set the maximum token length of each training sample to 1024. Regarding Gisting, utilizing
our conditional adapter enhances performance (Table 5). Based on this observation, we report the
improved performance achieved by applying our conditional adapter in the main experiment. To
confirm the effectiveness of compression, we adjust the length of ⟨COMP⟩ tokens to attain a suffi-
ciently large compression factor of approximately 8 for each dataset. For specific training recipes
and hyperparameters, please refer to Appendix B.

4.1 COMPRESSION PERFORMANCE

Comparison to full context method In Figure 6, we analyze the memory efficiency of our method
in an online inference scenario. Figure 6-a shows the performance obtained at each time step, along
with the peak memory required for attention keys/values during the compression and inference pro-
cesses illustrated in Figure 5. The results demonstrate the memory efficiency advantage of our

7



Published as a conference paper at ICLR 2024

1 2 4 8 16

52
58

61

64

67

70

Time step (# demonstration)

A
cc

ur
ac

y
(%

)↑
(a) MetaICL

1 2 4 8 16

69

75

77

79

81

83

85

Time step (# profile)

A
cc

ur
ac

y
(%

)↑

(b) LaMP

1 2 4 8 12

5.6

6.2

6.8

7.4

9.0

9.6

Time step (# dialogue turn)

Pe
rp

le
xi

ty
↓

(c) DailyDialog

≈ ≈

≈

No context Full context Gisting-online Compressive CCM-concat (ours) CCM-merge (ours)

Figure 7: Test performance of compression methods in online inference scenario with LLaMA-7B.
All compression methods have the identical compression factor around 8, except for CCM-merge,
which has a higher compression factor. We provide exact values in Appendix, Tables 23 to 25.

approach compared to the full context approach. Specifically, CCM-concat achieves comparable
performance by using half the key/value memory space, whereas CCM-merge attains equivalent
performance levels with approximately 1/8 of the key/value memory space. While CCM-concat
requires more memory, it outperforms the merge approach as time steps increase. Compared to
the No context method, which relies solely on inputs to generate outputs, our methods exhibit su-
perior performance with a negligible increment in context memory size. Remarkably, our method
demonstrates an 18% boost in performance compared to the no-context method at time step 16.

Comparison to compression baselines Figure 7 compares the test performance of compression
methods on various datasets. For a fair comparison, we set an identical compression factor for
all compression methods, except for CCM-merge, which has a higher compression factor. The
figure shows that our compressed context memory approach consistently outperforms established
compression baselines across all time steps, demonstrating performance that closely parallels the
full context approach. Regarding the Gisting approach, which is optimized for compressing a fixed
context in a single iteration, there is no performance improvement as the time step increases.

It is worth noting that there is a key distinction among the datasets considered. Regarding MetaICL,
the task demonstrations ci(1), . . . , ci(t) are mutually complementary, sharing information related
to the ith task. Similarly, LaMP’s user profiles share information about specific users. On these
datasets, both merge and concatenation approaches yield similar performance, indicating insignif-
icant compression loss during the merge operation. On the other hand, in the dialogue dataset,
the contexts ci(1), . . . , ci(t) conveyed through the ith conversation have distinct information. In
this case, the concatenation approach, which compresses context information into distinct memory
spaces, outperforms the merge approach as shown in Figure 7-c. This observation indicates that as
diverse information is introduced over time, the loss of information in the merge approach increases.

Unified compression adapter To demonstrate the generalization ability of our method in more
general scenarios, we train a single compression model and evaluate its performance across various
tasks. Specifically, we leverage MetaICL training tasks and a conversation dataset, SODA (Kim
et al., 2023), as our training data, and then evaluate on multiple test tasks: MetaICL unseen test
tasks, LaMP, and DailyDialog. In Appendix C, Table 15, we provide evaluation results of the single
compression model. We note that the compression performance decreases slightly compared to
a compression adapter trained specifically for each application (Figure 7). For example, on the
MetaICL test tasks, the compression accuracy gap increases from 0.8% to 1.3%. However, Table 15
shows that our method obtains the best compression ability across all evaluation sets, demonstrating
our approach’s generalization ability on data and scenarios unseen during training.

Effect of training data sources To analyze the impact of data used for compression adapter train-
ing, we compare the performance of CCM-concat trained with various data sources. Table 4 presents
evaluation results using RedPajama-V2 (Computer, 2023) and LmSys-Chat (Zheng et al., 2023) as
the base training data. The table shows that the evaluation performance improves when using train-
ing data from similar sources. Particularly, when adding a new data source, the performance in the
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Table 4: Compression performance gap across different data sources used to train compression
adapter. We measure the perplexity gap compared to the full context method at the maximum time
step (accuracy for MetaICL). We use CCM-concat with ⟨COMP⟩ token length of 2 on LLaMA-7B.

Evaluation dataset
Training dataset # training data Pretrain SODA DailyDialog MetaICL

Pretrain (= RedPajama + LmSys-Chat) 500k -0.55 -0.22 -0.74 -4.9%
Pretrain + MetaICL 500k -0.59 -0.26 -0.82 -1.2%
Pretrain + MetaICL + SODA 500k -0.61 -0.10 -0.54 -1.3%

Pretrain + MetaICL + SODA 750k -0.57 -0.09 -0.53 -1.1%

0 10k 20k 30k 40k 50k 60k
7.0

7.4

7.8

8.2

8.6

Context length

Pe
rp

le
xi

ty

CCM-concat (ours)
StreamingLLM

Figure 8: Streaming evaluation on PG19 validation set
using sliding window with LLaMA-7B.

Sink CCM Context sliding window

CompressEvict oldest

Streaming until reaching the window limit

Figure 9: KV cache during streaming
with CCM-concat. The example above
assumes a CCM maximum size of 4 and
a sliding window maximum size of 8.

added data source significantly improves with a marginal performance decrease in the existing data
sources. We believe that different data sources have different compressible information spaces, in-
dicating the importance of constructing training data tailored to the application scenario. Lastly, it
is worth noting that increasing the amount of training data enhances overall performance (last row
in Table 4), underscoring the significance of both the quantity and quality of the training data.

Streaming with sliding window We incorporate CCM into the sliding window approach with
attention sink (Xiao et al., 2023). During streaming, tokens are processed one by one while adhering
to the limited KV cache memory size. When the KV cache limit is reached, we compress the oldest
tokens in the context window to update the compressed memory (Figure 9). In the case of CCM-
concat, we manage the compressed memory size by emitting the oldest compressed key/value pair.
Following Xiao et al. (2023), we reassign sequential position IDs starting from 0 within the KV
cache in every streaming step. In Figure 8, we compare our approach to StreamingLLM (Xiao
et al., 2023), which only stores the most recent keys/values in the sliding window. To ensure a fair
comparison, we modify the baseline method to have an identical KV cache size as our approach at
every streaming step. We use the Pretrain+MetaICL+SODA 500k model in Table 4, and conduct
evaluation on the PG19 validation set (Rae et al., 2020). Specifically, we set the maximum KV size
to 160 and the CCM size to 8, while compressing 64 tokens to a size of 2 at each compression step.
The results in Figure 8 demonstrate the effectiveness of our compression method in the streaming
setting, outperforming the StreamingLLM approach.

4.2 ANALYSIS

In this section, we provide quantitative and qualitative analyses of our method. We provide sup-
plementary experimental results on compression token length, larger model scales, and different
model architectures in Appendix C.

Effect of conditional LoRA To demonstrate the effectiveness of the proposed conditional LoRA
in Equation (4), we compare compression performance with the default unconditional LoRA. Table 5
shows evaluation results obtained using the identical training recipe. The table confirms the consis-
tent superiority of our conditional LoRA over the default unconditional LoRA across all methods,
including Gisting. In Appendix Table 21, we provide results on LaMP and DailyDialog, demon-
strating that our conditional LoRA consistently improves the performance.
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Table 5: Test accuracy (%) of default
LoRA and our conditional LoRA with
LLaMA-7B on MetaICL at time step 16.

Method Default Conditional (ours)

CCM-concat 69.4 70.0 (+0.6)
CCM-merge 66.3 69.6 (+3.3)
Gisting 64.6 66.9 (+2.3)

Table 6: Comparison to a fixed-context compression
method (Gisting) with LLaMA-7B on MetaICL test
tasks at time step 16. Mem. refers to the peak mem-
ory occupied by attention keys/values.

Full context Gisting CCM-concat CCM-merge

Acc. (%) 70.8 ± 0.1 66.9 ± 0.2 70.0 ± 0.2 69.6 ± 0.1
Mem. (MB) 630 588 178 66

Table 7: Evaluation of RougeL and accuracy metrics with LLaMA-7B on MetaICL test tasks.

No context Full context Gisting-online Compressive CCM-concat CCM-merge

RougeL 12.3 61.4 37.9 47.9 54.7 48.3
Accuracy (%) 51.7 70.8 57.7 67.8 70.0 69.6

In-depth performance analysis We measure the generation performance of our compression ap-
proach using the RougeL metric in Table 7. The results verify that our methods deliver the most
accurate generation performance compared to other baselines. However, in the case of RougeL,
there is a pronounced decrease in performance compared to the full context method, whereas, in the
case of accuracy, the performance drop is less than 1%. Upon closer examination of the generated
outputs with compressed context, we identify instances where synonyms are generated (e.g., “Dif-
ferent” and “Dissimilar” in the medical questions pair task) or variations in letter casing are present
(e.g., “Hate” and “hate” in the tweet eval hate task). These observations suggest a semantic equiv-
alence between the original and generated results, albeit differences in expression. These findings
suggest that our approach performs particularly well in situations where prioritizing preferences or
nuances outweighs the need for exact phrasing.

Compression overhead and attention FLOPS Our method introduces additional model forward
computations for ⟨COMP⟩ tokens. In the case of LaMP, where we use ⟨COMP⟩ tokens with a length
of 4 for user profiles with an average token length of 50, the computational overhead caused by
compression amounts to 4/50 = 8%. By reducing the ⟨COMP⟩ token length to 1, we can lower the
computation overhead to 2% while incurring a performance drop of approximately 1%, as shown in
Table 18. Meanwhile, the inference benefits from reduced attention FLOPS due to the compressed
context. When processing tokens during inference with LLaMA-7B, if the token length exceeds 504,
the reduction in attention FLOPS surpasses the compression overhead FLOPS. For a more in-depth
analysis of computation FLOPS, please refer to Table 17 in Appendix C.

Comparison to fixed-context compression In Table 6, we present evaluation results of Gisting
with the fixed-context compression setting described in Figure 5-b. While having the same inference
complexity as CCM-merge, the fixed-context setting incurs significant memory demands during
compression. On the other hand, our approach maintains minimal memory requirements for both
stages, having a low peak memory usage. Moreover, our method improves the performance by 3%p
compared to Gisting, validating the effectiveness of our training strategy in online scenarios.

Comparison to recurrent compression methods We conduct a comparative analysis with RMT
and AutoCompressor that recurrently compress contexts into token embeddings (Bulatov et al.,
2022; Chevalier et al., 2023). These approaches fine-tune OPT pretrained models (Zhang et al.,
2022) on the Pile dataset (Gao et al., 2020) to learn compression capabilities. For evaluation, we
utilize the fine-tuned models available on the official GitHub repository1. We conduct separate ex-
periments on each baseline because the released RMT and AutoCompressor models show different
performances without compression (AutoCompressor in Table 8 and RMT in Appendix Table 22).
For a fair comparison, we also provide fine-tuned results of the baseline models on MetaICL training
tasks using identical training steps to ours, denoted as AutoCompressor-finetune and RMT-finetune.
As shown in the tables, our compression methods demonstrate superior performance and efficiency.
Specifically, RMT and AutoCompressor necessitate recursive model computation at each training
step, incurring significant computation time. As shown in Table 8, AutoCompressor requires ap-

1https://github.com/princeton-nlp/AutoCompressors
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Table 8: Comparison with AutoCompressor OPT-2.7B on MetaICL test tasks at time step 16. We
measure the training time using identical samples on an A100 GPU. We evaluate performance across
five different random seeds for demonstration order.

No context Full context AutoComp. AutoComp.-finetune CCM-concat CCM-merge

Accuracy (%) 41.4 ± 0.0 54.2 ± 0.5 48.1 ± 0.5 50.9 ± 0.4 53.5 ± 0.5 52.3 ± 0.3
Peak KV memory (MB) 31 394 156 156 111 41
Training time per sample (ms) - - 1330 1330 195 195

Table 9: Comparison to a text summarization method with LLaMA-7B on the DailyDialog test set.

No context Full context MemoryBank CCM-concat CCM-merge

Perplexity 10.6 5.59 7.06 5.98 6.34
Compressed context length 0 222 60 24 2

proximately 7× longer training time per sample than our approach. Meanwhile, our methods
exhibit superior performance while using less key/value memory, demonstrating its effectiveness.

Comparison to text summarization MemoryBank proposes reducing context size through text
summarization during language model interaction (Zhong et al., 2023). However, this approach
comes with additional computational costs for summarization and the overhead of processing the
summarized text for subsequent inference. In contrast, our approach allows for more efficient in-
ference without the aforementioned overhead by caching key/value pairs of compression tokens.
Following MemoryBank, we conduct experimental comparisons with LLaMA-7B on DailyDialog.
Specifically, we use the summarization prompt from MemoryBank to compress context through
OpenAI gpt-3.5-turbo API (ChatGPT) and then evaluate models with summarized contexts. Ta-
ble 9 shows the test perplexity of methods. The results confirms that our approach achieves superior
performance with smaller context memory size, demonstrating the effectivness of our key/value
compression approach.

Qualitative results Table 10 illustrates the results of applying our approach to DailyDialog, using
a ⟨COMP⟩ token length of 1. The table shows that our methods continue a seamless conversation
within the given context, while CCM-concat generates a response that better suits the overall context.

5 RELATED WORKS

Context compression Seminal works, such as Memory Networks, have introduced novel models
and computational approaches to efficiently store contextual information within limited space, en-
hancing the inference efficiency of language models (Weston et al., 2015; Ba et al., 2016). Recently,
there have been efforts to compress frequently used prompts, aiming to enhance the inference ef-
ficiency of large-scale language models. Wingate et al. (2022) advocate condensing prompts into
concise soft prompts. Hyper-Tuning (Phang et al., 2023) attempts to convert prompts into model
adapters, while Snell et al. (2022) propose distilling prompt information into the model parame-
ters. AutoCompressor (Chevalier et al., 2023) and ICAE (Ge et al., 2023) propose auto-encoding
approaches for compressing contexts into soft embeddings. Gisting (Mu et al., 2023) introduces
learnable tokens designed to compress context information within attention hidden states. These
previous methods focus on compressing fixed context to enhance reusability. In this study, we intro-
duce a task involving context compression during online inference and propose an effective approach
for handling dynamically changing contexts.

Long context Transformer In terms of efficient context processing, our approach relates to the
long context Transformer. Notably, Dai et al. (2019) aims to increase the context length through at-
tention hidden state caching, and Rae et al. (2020) proposes a strategy to compress attention hidden
states. Efforts have also focused on reducing the complexity of attention operations (Child et al.,
2019; Zaheer et al., 2020). These methods, which propose new attention mechanisms, require train-
ing large models from scratch, making it challenging to leverage existing pretrained models. The
following works propose recurrent memory-augmented approaches (Bulatov et al., 2022; Hutchins
et al., 2022), while Wu et al. (2022) propose k-nearest retrieval of attention key/value pairs to man-
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Table 10: An example result using our method with LLaMA-7B on a DailyDialog test sample.

Context:
A: What’s the problem, Nada? You look down in the dumps. ⟨COMP⟩
B: I don’t know. My life is a big mess. Everything is so complicated. ⟨COMP⟩
A: Come on, nothing can be that bad. ⟨COMP⟩
B: But promise me, you’ll keep it a secret. ⟨COMP⟩
A: Ok, I promise. So what’s troubling you so much? ⟨COMP⟩
B: I’ve fallen in love with my boss. ⟨COMP⟩
A: Really? Is he married? ⟨COMP⟩
⇒ Total 103 tokens. Context compression ratios are 7/103 (CCM-concat) and 1/103 (CCM-merge).

Input: No, of course not. He is still single.
Output generated w/o context: I’m sorry, I’m not sure what you mean.
Output generated by CCM-concat: So what’s the problem?
Output generated by CCM-merge: What’s his problem?
Ground truth output: Then what’s your problem?

age long contexts. These retrieval-based approaches, including MemoryBank (Zhong et al., 2023)
and LongMem (Wang et al., 2023), primarily focus on the token-level retrieval process, with less
emphasis on memory compression. However, as shown in Table 6, LLM’s keys and values demand
a significant amount of storage, reaching several hundred megabytes even for a context length of
1024. Such high storage requirements can become problematic in scenarios such as user-level per-
sonalization and conversation systems. Recently, notable attempts have been made to extend the
context length of LLaMA (Mohtashami & Jaggi, 2023; Tworkowski et al., 2023). While these stud-
ies concentrate on handling fixed contexts, our approach aims to dynamically compress expanding
contextual information within a compact memory space.

Online learning An alternative method to deploying models in online scenarios involves the con-
tinuous updates of model weights (Mitchell et al., 2018). There have been recent studies on online
adaptation within the language domain (Clark et al., 2022). Notably, Hu et al. (2023) adopt a meta-
learning approach for online learning. Nevertheless, these methods require substantial computation
resources for back-propagation. They still prove to be inefficient for scenarios requiring user-level
adaptation, such as conversation or personalization (Lazaridou et al., 2021). In contrast, our ap-
proach relies solely on the forward computation pass, making it highly efficient for online inference.

6 DISCUSSIONS

Application-specific compression When focusing on specific applications, the size of compress-
ible contextual information becomes larger than when considering general scenarios (Tishby & Za-
slavsky, 2015). This indicates that application-specific compression modules can achieve higher
compression efficiency compared to their more general counterparts. Similar to fine-tuning foun-
dation models for specific applications in various industries, an application-specific compression
module can be employed to achieve superior compression capability. It is noteworthy that our
method is application-agnostic, meaning it can be applied effectively to a wide range of scenar-
ios in a data-driven manner. Obtaining a compression module without requiring application-specific
knowledge or manual adjustments holds practical value. Furthermore, as demonstrated in the gen-
eralization test presented in Table 15, our approach shows generalization capabilities across various
applications and can be flexibly adapted to different scenarios.

Limitations and future works While our model is capable of generalizing to new tasks or user
contexts at test time, training a broadly applicable model for arbitrary applications remains an impor-
tant future direction. Moreover, despite surpassing existing compression baselines in performance,
our approach still declines in performance compared to when utilizing the full context. Developing
compression techniques that can ensure a higher level of information preservation remains a crucial
direction for future research.
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7 CONCLUSION

We present a novel compressed context memory system that dynamically compresses contextual
information, thereby enhancing the online inference efficiency of language models. To ensure effi-
cient training, we develop a parallelized training strategy and introduce a conditional adapter. Our
approach achieves reduced memory and attention FLOPS complexities compared to previous fixed-
context compression methods. We validate the practical applicability of our approach through a
comprehensive evaluation on multi-task learning, personalization, and conversation applications.
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APPENDIX

A DATASET DETAILS

Table 11 illustrates training data formats. While all datasets adhere to the same format, the content
within each context and input varies. In Table 12, we provide statistics for each dataset. In the
case of MetaICL, we employ the high-to-low-resource setting consisting of a total of 61 training
tasks and 26 test tasks, which is the most representative setting (Min et al., 2022). The token length
of demonstrations varies depending on the dataset type. We filter out demonstrations exceeding a
token length of 256 in both the training and evaluation sets. Taking into account the GPU memory
constraints, we set the maximum token length for the entire context to 1024. For LaMP, we conduct
evaluations in the personalized categorization setting (Salemi et al., 2023). The dataset exhibits
relatively lower token length variations than MetaICL. Regarding DailyDialog, as more than 90%
of the test samples have dialogue turns of 12 or fewer, we set the maximum time step to 12.

Table 11: Illustrative format of each dataset sample.

Dataset Context Ci(t) with ⟨COMP⟩ token Input Ii(t)

MetaICL Demonstration 1 for task i ⟨COMP⟩ · · · Demonstration t for task i ⟨COMP⟩ A problem for task i
LaMP Profile 1 for user i ⟨COMP⟩ · · · Profile t for user i ⟨COMP⟩ A query for user i
DailyDialog Turn 1 from dialog i ⟨COMP⟩ · · · Turn t from dialog i ⟨COMP⟩ Turn t+1 from dialog i

Table 12: Descriptions for datasets considered.

MetaICL LaMP DailyDialog

Average token length of context c(·) at each time step 50 50 15
Maximum token length of context c(·) at each time step 256 100 128
Maximum time step T 16 16 12

B EXPERIMENT SETUP

Training protocol and hyperparameter Our approach first fine-tunes the pretrained LLaMA
models on each training dataset, following the training recipe in Table 13 and the LORA config-
uration in Table 14. The resulting LORA adapters are then merged with the pre-existing model
weights. Using this fine-tuned model as a foundation, we proceed to train the compression capabil-
ity. To ensure a fair comparison, we optimize both compression baselines and our methods using
the same training recipe in Table 13 and LORA configuration in Table 14. We jointly optimize the
embeddings for ⟨COMP⟩ tokens, where ⟨COMP⟩ tokens at different time steps share the same em-
bedding. All training processes are conducted on a single A100 PCIe 80GB GPU and take 3 to 24
hours, depending on the dataset.

Table 13: Training recipes of our experiments for LLaMA models.

MetaICL LaMP DailyDialog

Training steps 2000 300 1000
Batch size 128 128 128
# training samples 256k 38k 128k
Learning rate 3e-4 3e-4 3e-4
Learning rate scheduling Cosine Cosine Cosine
Mixed precision FP16 FP16 FP16
⟨COMP⟩ token length 8 4 2

Evaluation method For MetaICL and LaMP, we measure the accuracy for multi-choice questions
by comparing the average log-likelihood on tokens of each answer choice, following the official
evaluation codes provided by MetaICL (Min et al., 2022).
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Table 14: LoRA configurations for LLaMA models. We use this configuration for all experiments.

Argument Setting

Target modules q proj,k proj,v proj,o proj
Rank 8
Alpha 16
Dropout 0.05

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 MAIN ANALYSIS

Unified compression adapter We train a single compression adapter with LLaMA-7B on the
mixture of the MetaICL training tasks and the SODA conversation dataset. We follow the training
recipe in Table 13, while we train a model for 4k steps. We train the Gisting and Compressive
Transformer baselines using the same dataset and training protocol. We use the ⟨COMP⟩ token length
of 2 for CCM-concat and 8 for CCM-merge. Finally, we test the model on the MetaICL unseen test
tasks, LaMP, and DailyDialog at the corresponding maximum time step.

Table 15 demonstrates the generalization ability of our approach on datasets and scenarios unseen
during training. Specifically, CCM-concat maintains the best compression performance by a large
margin compared to baseline methods. We observe that CCM-merge has increased performance
degradation by compression compared to the scenario-specific settings (e.g., the LaMP accuracy
degradation by compression increased from 1.2% to 5.1%). However, the other compression base-
lines have a larger performance gap by compression, demonstrating our approach achieves the best
generalization performance among the baselines.

Table 15: Evaluation of a single model trained on MetaICL and SODA training datasets. Memory
refers to the peak memory required for attention keys/values during inference.

Test dataset Metric No context Full context Gisting-online Compressive CCM-concat CCM-merge

MetaICL Accuracy (%) 53.6 70.0 59.9 65.0 68.7 67.8
Memory (MB) 50 630 82 82 82 66

LaMP Accuracy (%) 37.0 76.4 67.6 58.4 75.2 71.4
Memory (MB) 50 755 82 82 82 66

DailyDialog Perplexity 11.51 7.02 9.04 9.19 7.61 8.22
Memory (MB) 32 252 54 54 54 38

Design choice of merge function In the main experiments, we evaluate an update method based
on the arithmetic average of the compressed states up to the present time, i.e., at = 1/t. An-
other natural design choice is an exponential moving average (EMA), where at is set to a constant
value. This strategy weighs higher importance on recent information compared to the arithmetic
average. Table 16 provides a comparison between the arithmetic average and EMA with at = 0.5,
on DailyDialog with LLaMA-7B. The results indicate that both methods yield similar performance.
When forming the compression state h(t), our method involves referencing the previous memory
Mem(t91) (Figure 2). We believe this enables the preservation of overall context, even with expo-
nentially decreasing coefficients for past states by EMA.

Table 16: Comparison of merge function design choices with LLaMA-7B on DailyDialog.

Method \Time step 1 2 4 8 12

EMA 7.49 7.06 6.79 6.49 6.38
Arithmetic average 7.47 7.06 6.87 6.54 6.34

FLOPS analysis Regarding FLOPS, our approach has two notable effects:

• Reduction in attention FLOPS due to the shortened context.
• Computation overhead incurred by the compression process.
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The reduction in attention FLOPS becomes more pronounced as the number of processed tokens
during inference increases. In Table 17, we compute the minimum length of tokens required to be
processed during inference, where the benefits from the shortened context outweigh the compression
overhead. Our analysis is based on a context token length of 50, according to the dataset statistics
in Table 12. With ⟨COMP⟩ token length of 1, our approach reduces the total computation FLOPS
when the length of the processed token during inference surpasses 504. We summarize the results
on larger ⟨COMP⟩ token lengths in Table 17.

Table 17: Compression FLOPS overhead analysis on MetaICL with LLaMa-7B. Threshold refers
to the minimum token length required during inference for the reduction in attention FLOPS to
outweigh the compression overhead. We assume that the token length of context c(t) is 50, according
to the MetaICL and LaMP datasets’ statistics (Table 12).

⟨COMP⟩ token length
1 2 4 8

Context compression factor ×50 ×25 ×13 ×6
Threshold (inference token length) 504 1029 2148 4706

Additional memory-performance graphs In Figure 10, we present graphs illustrating the rela-
tionship between attention KV memory and performance across increasing time steps for MetaICL,
LaMP, and DailyDialog. The figure comprehensively compares all methods introduced in our main
text, including a fixed-context compression method such as Gisting. From the figure, we verify that
our methods exhibit the best memory-performance efficiency. Specifically, our methods achieve
superior performance while requiring minimal attention KV memory when compared to existing
compression baselines.
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Figure 10: Test performance of methods with LLaMA-7B over increasing time steps in an online
inference scenario. The x-axis refers to the peak memory space occupied by attention keys/values
during compression and inference processes at each time step. Here, the time steps span from 1 to
16, except for DailyDialog, which covers a range of 1 to 12.

C.2 COMPRESSION TOKEN LENGTH AND MODEL

Length of compression token In Table 18, we analyze the performance of our method across
varying compression token lengths. In general, increasing the token length leads to a slight im-
provement in performance. For MetaICL, we observe a 1% accuracy gain, while the DailyDialog
experiment shows a 1% reduction in perplexity as token length increases. However, when comparing
our approach to the no-context method, the performance differences attributed to the compression
token length are not significant. For example, our method outperforms the no-context approach
by approximately 18% in the MetaICL experiment. In our main experiment, we set the compres-
sion token length according to the average context length of the target dataset, ensuring consistent
compression rates across datasets. We provide detailed configuration values in Table 13.
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Table 18: Analysis of ⟨COMP⟩ token length with LLaMA-7B at the maximum time step (Table 12).
Here, concat refers to CCM-concat, and merge denotes CCM-merge.

(a) MetaICL (Accuracy %). No con-
text: 51.6% \ Full context: 70.8%.

⟨COMP⟩ token length
1 2 4 8

concat 69.5 69.3 70.0 70.0
merge 68.5 68.1 68.3 69.6

(b) LaMP (Accuracy %). No con-
text: 69.5% \ Full context: 85.1%.

⟨COMP⟩ token length
1 2 4

concat 84.3 83.9 84.7
merge 83.4 84.2 83.9

(c) DailyDialog (Perplexity). No
context: 10.3 \ Full context: 5.85.

⟨COMP⟩ token length
1 2 4

concat 6.51 6.37 6.26
merge 6.67 6.62 6.63

Larger model scale In Table 19, we provide evaluation results with LLaMA-13B on MetaICL.
Consistent with 7B models, our method exhibits the best performance among the compression base-
lines while requiring smaller peak attention KV memory.

Table 19: LLaMA-13B test accuracy and peak attention KV memory on MetaICL at time step 16.

No context Full context Gisting Gisting-online Compressive CCM-concat CCM-merge

Accuracy (%) 51.4 72.1 66.7 62.5 66.1 70.7 68.6
Memory (MB) 78 984 919 278 278 278 103

Different model architecture We evaluate our method with an encoder-decoder structured model,
Flan-T5-Large (Chung et al., 2022). Since there exists an overlap between the training set of Flan-
T5 and the MetaICL dataset (Min et al., 2022), we conduct an evaluation using the LaMP dataset.
Table 20 presents the evaluation results at time step 16. While both Gisting and Compressive Trans-
former exhibit a significant drop in accuracy compared to the full context method, our methods
achieve the best performance while requiring less key/value memory on the Flan-T5 architecture.

Table 20: Test accuracy and peak key/value memory size with Flan-T5-Large on LaMP at time step
16. We evaluate performance across five different random seeds for user profile order.

No context Full context Gisting-online Compressive CCM-concat CCM-merge

Accuracy (%) 71.1 ± 0.0 81.8 ± 0.3 78.4 ± 0.3 79.7 ± 0.4 81.9 ± 0.2 82.1 ± 0.3
Memory (MB) 20 152 32 32 32 21
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Table 21: Evaluation results of default LoRA and our conditional LoRA with LLaMA-7B.
(a) LaMP (Accuracy %)

Default Conditional (ours)

CCM-concat 83.9 84.7
CCM-merge 82.6 83.9

(b) DailyDialog (Perplexity)

Default Conditional (ours)

CCM-concat 6.01 5.96
CCM-merge 6.42 6.33

Table 22: Comparison with RMT OPT-2.7B on MetaICL at time step 16. We measure the train-
ing time using identical samples on an A100 GPU. We evaluate performance across five different
random seeds for demonstration order.

No context Full context RMT RMT-finetune CCM-concat CCM-merge

Accuracy (%) 42.1 ± 0.0 54.5 ± 0.4 44.4 ± 0.4 50.0 ± 0.3 52.3 ± 0.4 52.2 ± 0.3
Peak KV memory (MB) 31 394 63 63 111 41
Training time per sample (ms) - - 1330 1330 195 195

Table 23: Test accuracy (%) on MetaICL with LLaMA-7B. The test set is identical across time steps.

Time step No context Full context Gisting-online Compressive CCM-concat CCM-merge

1 51.7 62.8 61.7 59.6 63.0 62.7
2 51.7 64.4 62.6 60.7 64.4 65.5
4 51.7 68.7 62.7 66.7 67.8 68.5
8 51.7 69.9 59.7 67.6 68.9 69.3
16 51.7 70.8 57.7 67.8 70.0 69.6

Table 24: Test accuracy (%) on LaMP with LLaMA-7B. The test set is identical across time steps.

Time step No context Full context Gisting-online Compressive CCM-concat CCM-merge

1 69.5 79.1 78.5 75.0 78.6 79.1
2 69.5 80.6 77.3 77.2 79.5 80.4
4 69.5 81.8 78.5 79.1 82.3 82.2
8 69.5 83.1 79.6 81.6 84.0 83.5
16 69.5 85.1 78.7 82.8 84.7 83.9

Table 25: Test perplexity on DailyDialog with LLaMA-7B.

Time step No context Full context Gisting-online Compressive CCM-concat CCM-merge

1 8.93 6.97 7.42 7.60 7.38 7.47
2 9.06 6.62 7.47 7.14 6.97 7.04
4 9.33 6.30 7.47 6.91 6.64 6.85
8 9.85 5.84 7.68 6.52 6.17 6.53
12 9.67 5.56 7.44 6.38 5.91 6.27
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