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Abstract

Vision Transformer (ViT) extends the application range
of transformers from language processing to computer vi-
sion tasks as being an alternative architecture against
the existing convolutional neural networks (CNN). Since
the transformer-based architecture has been innovative for
computer vision modeling, the design convention towards
an effective architecture has been less studied yet. From
the successful design principles of CNN, we investigate
the role of spatial dimension conversion and its effective-
ness on transformer-based architecture. We particularly at-
tend to the dimension reduction principle of CNNs; as the
depth increases, a conventional CNN increases channel di-
mension and decreases spatial dimensions. We empirically
show that such a spatial dimension reduction is beneficial
to a transformer architecture as well, and propose a novel
Pooling-based Vision Transformer (PiT) upon the origi-
nal ViT model. We show that PiT achieves the improved
model capability and generalization performance against
ViT. Throughout the extensive experiments, we further show
PiT outperforms the baseline on several tasks such as im-
age classification, object detection, and robustness evalua-
tion. Source codes and ImageNet models are available at
https://github.com/naver-ai/pit.

1. Introduction

The architectures based on the self-attention mechanism
have achieved great success in the field of Natural Lan-
guage Processing (NLP) [34]. There have been attempts
to utilize the self-attention mechanism in computer vision.
Non-local networks [37] and DETR [4] are representative
works, showing that the self-attention mechanism is also ef-
fective in video classification and object detection tasks, re-
spectively. Recently, Vision Transformer (ViT) [9], a trans-
former architecture consisting of self-attention layers, has
been proposed to compete with ResNet [13], and shows that
it can achieve the best performance without convolution op-
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eration on ImageNet [8]. As a result, a new direction of net-
work architectures based on self-attention mechanism, not
convolution operation, has emerged in computer vision.

ViT is quite different from convolutional neural networks
(CNN). Input images are divided into 16×16 patches and
fed to the transformer network; except for the first embed-
ding layer, there is no convolution operation in ViT, and the
position interactions occur only through the self-attention
layers. While CNNs have restricted spatial interactions, ViT
allows all the positions in an image to interact through trans-
former layers. Although ViT is an innovative architecture
and has proven its powerful image recognition ability, it fol-
lows the transformer architecture in NLP [34] without any
changes. Some essential design principles of CNNs, which
have proved to be effective in the computer vision domain
over the past decade, are not sufficiently reflected. We thus
revisit the design principles of CNN architectures and in-
vestigate their efficacy when applied to ViT architectures.

CNNs start with a feature of large spatial sizes and a
small channel size and gradually increase the channel size
while decreasing the spatial size. This dimension conver-
sion is indispensable due to the layer called spatial pool-
ing. Modern CNN architectures, including AlexNet [21],
ResNet [13], and EfficientNet [32], follow this design prin-
ciple. The pooling layer is deeply related to the receptive
field size of each layer. Some studies [6, 26, 5] show that
the pooling layer contributes to the expressiveness and gen-
eralization performance of the network. However, unlike the
CNNs, ViT does not use a pooling layer and uses the same
spatial dimension for all layers.

First, we verify the advantages of dimensions configu-
rations on CNNs. Our experiments show that ResNet-style
dimensions improve the model capability and generaliza-
tion performance of ResNet. To extend the advantages to
ViT, we propose a Pooling-based Vision Transformer (PiT).
PiT is a transformer architecture combined with a newly de-
signed pooling layer. It enables the spatial size reduction in
the ViT structure as in ResNet. We also investigate the ben-
efits of PiT compared to ViT and confirm that ResNet-style
dimension setting also improves the performance of ViT.
Finally, to analyze the effect of PiT compared to ViT, we
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Figure 1. Schematic illustration of dimension configurations of networks. We visualize ResNet50 [13], Vision Transformer (ViT) [9],
and our Pooling-based Vision Transformer (PiT); (a) ResNet50 gradually downsamples the features from the input to the output; (b) ViT
does not change the spatial dimensions; (c) PiT involves ResNet style spatial dimension into ViT.

analyze the attention matrix of transformer block with en-
tropy and average distance measure. The analysis shows the
attention patterns inside layers of ViT and PiT, and helps to
understand the inner mechanism of ViT and PiT.

We verify that PiT improves performances over ViT on
various tasks. On ImageNet classification, PiT and outper-
forms ViT at various scales and training environments. Ad-
ditionally, we have compared the performance of PiT with
various convolutional architectures and have specified the
scale at which the transformer architecture outperforms the
CNN. We further measure the performance of PiT as a back-
bone for object detection. ViT- and PiT-based deformable
DETR [44] are trained on the COCO 2017 dataset [24] and
the result shows that PiT is even better than ViT as a back-
bone architecture for a task other than image classification.
Finally, we verify the performance of PiT in various envi-
ronments through the robustness benchmark.

2. Related works

2.1. Dimension configuration of CNN

Dimension conversion can be found in AlexNet [21],
which is one of the earliest convolutional networks in com-
puter vision. AlexNet uses three max-pooling layers. In the
max-pooling layer, the spatial size of the feature is reduced
by half, and the channel size is increased by the convolu-
tion after the max-pooling. VGGnet [30] uses 5 spatial res-
olutions using 5 max-pooling. In the pooling layer, the spa-
tial size is reduced by half and the channel size is doubled.
GoogLeNet [31] also used the pooling layer. ResNet [13]
performed spatial size reduction using the convolution layer
of stride 2 instead of max pooling. It is an improvement
in the spatial reduction method. The convolution layer of
stride 2 is also used as a pooling method in recent archi-
tectures (EfficietNet [32], MobileNet [29, 19]). Pyramid-
Net [11] pointed out that the channel increase occurs only
in the pooling layer and proposed a method to gradually
increase the channel size in layers other than the pooling
layer. ReXNet [12] reported that the channel configuration
of the network has a significant influence on the network

performance. In summary, most convolution networks use a
dimension configuration with spatial reduction.

2.2. Self-attention mechanism

Transformer architecture [34] significantly increased the
performance of the NLP task with the self-attention mecha-
nism. Funnel Transformer [7] improves the transformer ar-
chitecture by reducing tokens by a pooling layer and skip-
connection. However, because of the basic difference be-
tween the architecture of NLP and computer vision, the
method of applying to pool is different from our method.
Some studies are conducted to utilize the transformer archi-
tecture to the backbone network for computer vision tasks.
Non-local network [37] adds a few self-attention layers to
CNN backbone, and it shows that the self-attention mecha-
nism can be used in CNN. [28] replaced 3 × 3 convolution
of ResNet to local self-attention layer. [36] used an atten-
tion layer for each spatial axis. [2] enables self-attention of
the entire spatial map by reducing the computation of the
attention mechanism. Most of these methods replace 3x3
convolution with self-attention or adds a few self-attention
layers. Therefore, the basic structure of ResNet is inherited,
that is, it has the convolution of stride 2 as ResNet, resulting
in a network having a dimension configuration of ResNet.

Only the vision transformer uses a structure that uses
the same spatial size in all layers. Although ViT did not
follow the conventions of ResNet, it contains many valu-
able new components in the network architecture. In ViT,
layer normalization is applied for each spatial token. There-
fore, layer normalization of ViT is closer to positional nor-
malization [22] than a layer norm of convolutional neural
network [1, 39]. Although it overlaps with the lambda net-
work [2], it is not common to use global attention through
all blocks of the network. The use of class tokens instead
of global average pooling is also new, and it has been re-
ported that separating tokens increases the efficiency of dis-
tillation [33]. In addition, the layer configuration, the skip-
connection position, and the normalization position of the
Transformer are also different from ResNet. Therefore, our
study gives a direction to the new architecture.



(a) Model capability (b) Generalization performance (c) Model performance

Figure 2. Effects of the spatial dimensions in ResNet50 [13]. We verify the effect of the spatial dimension with ResNet50. As shown in
the figures, ResNet-style is better than ViT-style in the model capability, generalization performance, and model performance.

3. Revisiting spatial dimensions
In order to introduce dimension conversion to ViT,

we investigate spatial dimensions in network architectures.
First, we verify the benefits of dimension configuration in
ResNet architecture. Although dimension conversion has
been widely used for most convolutional architectures, its
effectiveness is rarely verified. Based on the findings, we
propose a Pooling-based Vision Transformer (PiT) that ap-
plies the ResNet-style dimension to ViT. We propose a new
pooling layer for transformer architecture and design ViT
with the new pooling layer (PiT). With PiT models, we ver-
ify whether the ResNet-style dimension brings advantages
to ViT. In addition, we analyze the attention matrix of the
self-attention block of ViT to investigate the effect of PiT in
the transformer mechanism. Finally, we introduce PiT ar-
chitectures corresponding to various scales of ViT.

3.1. Dimension setting of CNN

As shown in Figure 1 (a), most convolutional architec-
tures reduce the spatial dimension while increases the chan-
nel dimension. In ResNet50, a stem layer reduces the spatial
size of an image to 56×56. After several layer blocks, Con-
volution layers with stride 2 reduce the spatial dimension by
half and double the channel dimension. The spatial reduc-
tion using a convolution layer with stride 2 is a frequently
used method in recent architectures [32, 29, 19, 12]. We
conduct an experiment to analyze the performance differ-
ence according to the presence or absence of the spatial re-
duction layer in a convolutional architecture. ResNet50, one
of the most widely used networks in ImageNet, is used for
architecture and is trained over 100 epochs without complex
training techniques. For ResNet with ViT style dimension,
we use the stem layer of ViT to reduce the feature to 14×14
spatial dimensions while reducing the spatial information
loss in the stem layer. We also remove the spatial reduction
layers of ResNet to maintain the initial feature dimensions
for all layers like ViT. We measured the performance for
several sizes by changing the channel size of ResNet.

First, we measured the relation between FLOPs and
training loss of ResNet with ResNet-style or ViT-style di-
mension configuration. As shown in Figure 2 (a), ResNet
(ResNet-style) shows lower training loss over the same
computation costs (FLOPs). It implies that ResNet-style di-
mensions increase the capability of architecture. Next, we
analyzed the relation between training and validation ac-
curacy, which represents the generalization performance of
architecture. As shown in Figure 2 (b), ResNet (ResNet-
style) achieves higher validation accuracy than ResNet
(ViT-style). Therefore, ResNet-style dimension configura-
tion is also helpful for generalization performance. In sum-
mary, ResNet-style dimension improves the model capabil-
ity and generalization performance of the architecture and
consequently brings a significant improvement in validation
accuracy as shown in Figure 2 (c).

3.2. Pooling-based Vision Transformer (PiT)

Vision Transformer (ViT) performs network operations
based on self-attention, not convolution operations. In the
self-attention mechanism, the similarity between all loca-
tions is used for spatial interaction. Figure 1 (b) shows the
dimension structure of this ViT. Similar to the stem layer
of CNN, ViT divides the image by patch at the first embed-
ding layer and embedding it to tokens. Basically, the struc-
ture does not include a spatial reduction layer and keeps
the same number of spatial tokens overall layer of the net-
work. Although the self-attention operation is not limited
by spatial distance, the size of the spatial area participat-
ing in attention is affected by the spatial size of the feature.
Therefore, in order to adjust the dimension configuration
like ResNet, a spatial reduction layer is also required in ViT.

To utilize the advantages of the dimension configura-
tion to ViT, we propose a new architecture called Pooling-
based Vision Transformer (PiT). First, we designed a pool-
ing layer for ViT. Our pooling layer is shown in Figure 4.
Since ViT handles neuron responses in the form of 2D-
matrix rather than 3D-tensor, the pooling layer should sep-
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Figure 3. Effects of the spatial dimensions in vision transformer (ViT) [9]. We compare our Pooling-based Vision Transformer (PiT)
with original ViT at various aspects. PiT outperforms ViT in capability, generalization performance, and model performance.Pooling layer
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Figure 4. Pooling layer of PiT architecture. PiT uses the pooling
layer based on depth-wise convolution to achieve channel multi-
plication and spatial reduction with small parameters.

arate spatial tokens and reshape them into 3D-tensor with
spatial structure. After reshaping, spatial size reduction and
channel increase are performed by depth-wise convolution.
And, the responses are reshaped into a 2D matrix for the
computation of transformer blocks. In ViT, there are parts
that do not correspond to the spatial structure, such as a
class token or distillation token [33]. For these parts, the
pooling layer uses an additional fully-connected layer to ad-
just the channel size to match the spatial tokens. Our pool-
ing layer enables spatial reduction on ViT and is used for
our PiT architecture as shown in Figure 1 (c). PiT includes
two pooling layers which make three spatial scales.

Using PiT architecture, we performed an experiment to
verify the effect of PiT compared to ViT. The experiment
setting is the same as the ResNet experiment. Figure 3 (a)
represents the model capability of ViT and PiT. At the same
computation cost, PiT has a lower train loss than ViT. Us-
ing the spatial reduction layers in ViT also improves the ca-
pability of architecture. The comparison between training
accuracy and validation accuracy shows a significant dif-
ference. As shown in Figure 3 (b), ViT does not improve
validation accuracy even if training accuracy increases. On

the other hand, in the case of PiT, validation accuracy in-
creases as training accuracy increases. The big difference in
generalization performance causes the performance differ-
ence between PiT and ViT as shown in Figure 3 (c). The
phenomenon that ViT does not increase performance even
when FLOPs increase in ImageNet is reported in ViT pa-
per [9]. In the training data of ImageNet scale, ViT shows
poor generalization performance, and PiT alleviates this.
So, we believe that the spatial reduction layer is also nec-
essary for the generalization of ViT. Using the training trick
is a way to improve the generalization performance of ViT
in ImageNet. The combination of training tricks and PiT is
covered in the experiment section.

3.3. Attention analysis

We analyze the transformer networks with measures on
attention matrix [35]. We denotes αi,j as (i, j) component
of attention matrix A ∈ RM×N . Note that attention values
after soft-max layer is used, i.e.

∑
i αi,j = 1. The attention

entropy is defined as

Entropy = − 1

N

N∑
j

∑
i

αi,j logαi,j . (1)

The entropy shows the spread and concentration degree of
an attention interaction. A small entropy indicates a con-
centrated interaction, and a large entropy indicates a spread
interaction. We also measure an attention distance,

Distance =
1

N

N∑
j

∑
i

αi,j‖pi − pj‖1. (2)

pi represents relative spatial location of i-th token
(xi/W, yi/H) for feature map F ∈ RH×W×C . So, the at-
tention distance shows a relative ratio compared to the over-
all feature size, which enables comparison between the dif-
ferent sizes of features. We analyze transformer-based mod-
els (ViT-S [33] and PiT-S) and values are measured over-
all validation images and are averaged over all heads of



each layer. Our analysis is only conducted for the spatial
tokens rather than the class token following the previous
study [35]. We also skip the attention of the last transformer
block since the spatial tokens of the last attention are inde-
pendent of the network outputs.

The results are shown in Figure 5. In ViT, the entropy
and the distance increase as the layer become deeper. It im-
plies that the interaction of ViT is concentrated to close to-
kens at the shallow layers and the interaction is spread in
a wide range of tokens at the deep layers. The entropy and
distance pattern of ViT is similar to the pattern of trans-
former in the language domain [35]. PiT changes the pat-
terns with the spatial dimension setting. At shallow layers
(1-2 layers), large spatial size increases the entropy and dis-
tance. On the other hand, the entropy and distance are de-
creased at deep layers (9-11 layers) due to the small spatial
size. In short, the pooling layer of PiT spreads the interac-
tion in the shallow layers and concentrates the interaction
in the deep layers. In contrast to discrete word inputs of the
language domain, the vision domain uses image-patch in-
puts which require pre-processing operations such as filter-
ing, contrast, and brightness calibration. In shallow layers,
the spread interaction of PiT is close to the pre-processing
than the concentrated interaction of ViT. Also, compared to
language models, image recognition has relatively low out-
put complexity. So, in deep layers, concentrated interaction
might be enough. There are significant differences between
the vision and the language domain, and we believe that the
attention of PiT is suitable for image recognition backbone.

3.4. Architecture design

The architectures proposed in ViT paper [9] aimed at
datasets larger than ImageNet. These architectures (ViT-
Large, ViT-Huge) have an extremely large scale than gen-
eral ImageNet networks, so it is not easy to compare them
with other networks. So, following the previous study [33]
of Vision Transformer on ImageNet, we design the PiT at a
scale similar to the small-scale ViT architectures (ViT-Base,
ViT-Small, ViT-Tiny). In the DeiT paper [33], ViT-Small
and ViT-Tiny are named DeiT-S and DeiT-Ti, but to avoid
confusion due to the model name change, we use ViT for
all models. Corresponding to the three scales of ViT (tiny,
small, and base), we design four scales of PiT (tiny, extra
small, small, and base). Detail architectures are described in
Table 1. For convenience, we abbreviate the model names:
Tiny - Ti, eXtra Small - XS, Small - S, Base - B FLOPs and
spatial size were measured based on 224×224 image. Since
PiT uses a larger spatial size than ViT, we reduce the stride
size of the embedding layer to 8, while patch-size is 16 as
ViT. Two pooling layers are used for PiT, and the channel
increase is implemented as increasing the number of heads
of multi-head attention. We design PiT to have a similar
depth to ViT, and adjust the channels and the heads to have

(a) Attention entropy

(b) Spatial distance of interaction

Figure 5. Attention analysis. We investigate the attention matrix
of the self-attention layer. Figure (a) shows the entropy and figure
(b) shows the interaction distance. PiT increases the entropy and
the distance in shallow layers and decreases in deep layers.

Network
Spatial

size
# of

blocks
# of

heads
Channel

size
FLOPs

ViT-Ti [33] 14 x 14 12 3 192 1.3B

PiT-Ti
27 x 27 2 2 64

0.7B14 x 14 6 4 128
7 x 7 4 8 256

PiT-XS
27 x 27 2 2 96

1.4B14 x 14 6 4 192
7 x 7 4 8 384

ViT-S [33] 14 x 14 12 6 384 4.6B

PiT-S
27 x 27 2 3 144

2.9B14 x 14 6 6 288
7 x 7 4 12 576

ViT-B [9] 14 x 14 12 12 768 17.6B

PiT-B
31 x 31 3 4 256

12.5B16 x 16 6 8 512
8 x 8 4 16 1024

Table 1. Architecture configuration. The table shows spatial
sizes, number of blocks, number of heads, channel size, and
FLOPs of ViT and PiT. The structure of PiT is designed to be as
similar as possible to ViT and to have less GPU latency.

smaller FLOPs, parameter size, and GPU latency than those
of ViT. We clarify that PiT is not designed with large-scale
parameter search such as NAS [25, 3], so PiT can be further
improved through a network architecture search.



Architecture FLOPs
# of

params
Throughput
(imgs/sec)

Vanilla +CutMix [41] +DeiT [33] +Distill⚗ [33]

ViT-Ti [33] 1.3 B 5.7 M 2564 68.7% 68.5% 72.2% 74.5%
PiT-Ti 0.7 B 4.9 M 3030 71.3% 72.6% 73.0% 74.6%

PiT-XS 1.4 B 10.6 M 2128 72.4% 76.8% 78.1% 79.1%

ViT-S [33] 4.6 B 22.1 M 980 68.7% 76.5% 79.8% 81.2%
PiT-S 2.9 B 23.5 M 1266 73.3% 79.0% 80.9% 81.9%

ViT-B [9] 17.6 B 86.6 M 303 69.3% 75.3% 81.8% 83.4%
PiT-B 12.5 B 73.8 M 348 76.1% 79.9% 82.0% 84.0%

Table 2. ImageNet performance comparison with ViT. We compare the performances of ViT and PiT with some training techniques on
ImageNet dataset. PiT shows better performance with low computation compared to ViT.

4. Experiments

We verified the performance of PiT through various ex-
periments. First, we compared PiT at various scales with
ViT in various training environments of ImageNet training.
And, we extended the ImageNet comparison to architec-
tures other than Transformer. In particular, we focus on the
comparison of the performance of ResNet and PiT, and in-
vestigate whether PiT can beat ResNet. We also applied PiT
to an object detector based on deformable DETR [44], and
compared the performance as a backbone architecture for
object detection. To analyze PiT in various views, we eval-
uated the performance of PiT on robustness benchmarks.

4.1. ImageNet classification

We compared the performance of PiT models of Table 1
with corresponding ViT models. To clarify the computa-
tion time and size of the network, we measured FLOPs, the
number of parameters, and GPU throughput (images/sec)
of each network. The GPU throughput was measured on
NVIDIA V100 single GPU with 128 batch-size. We trained
the network using four representative training environ-
ments. The first is a vanilla setting that trains the network
without complicated training techniques. The vanilla setting
has the lowest performance due to the lack of techniques to
help generalization performance and also used for the previ-
ous experiments in Figure 2, 3. The second is training with
CutMix [41] data augmentation. Although only data aug-
mentation has changed, it shows significantly better perfor-
mance than the vanilla setting. The third is the DeiT [33]
setting, which is a compilation of training techniques to
train ViT on ImageNet-1k [8]. DeiT setting includes vari-
ous training techniques and parameter tuning, and we used
the same training setting through the official open-source
code. However, in the case of Repeated Augment [18], we
confirmed that it had a negative effect in a small model, and
it was used only for Base models. The last is a DeiT set-
ting with knowledge distillation. The distillation setting is
reported as the best performance setting in DeiT [33] pa-
per. The network uses an additional distillation token and is

trained with distillation loss [17] using RegNetY-16GF [27]
as a teacher network. We used AdamP [16] optimizer for all
settings, and the learning rate, weight decay, and warmup
were set equal to DeiT [33] paper. We train models over 100
epochs for Vanilla and CutMix settings, and 300 epochs for
DeiT and Distill⚗ settings.

The results are shown in Table 2. Comparing the PiT
and ViT of the same name, the PiT has fewer FLOPs and
faster speed than ViT. Nevertheless, PiT shows higher per-
formance than ViT. In the case of vanilla and CutMix set-
tings, where a few training techniques are applied, the per-
formance of PiT is superior to the performance of ViT. Even
in the case of a DeiT and distill settings, PiT shows com-
parable or better performance to ViT. Therefore, PiT can
be seen as a better architecture than ViT in terms of per-
formance and computation. The generalization performance
issue of ViT in Figure 3 can also be observed in this experi-
ment. Like ViT-S in the Vanilla setting and ViT-B in the Cut-
Mix setting, ViT often shows no increase in performance
even when the model size increases. On the other hand, the
performance of PiT increases according to the model size in
all training settings. it seems that the generalization perfor-
mance problem of ViT is alleviated by the pooling layers.

We compared the performance of PiT with the convolu-
tional networks. In the previous experiment, we performed
the comparison in the same training setting using the simi-
larity of architecture. However, when comparing various ar-
chitectures, it is infeasible to unify with a setting that works
well for all architectures. Therefore, we performed the com-
parison based on the best performance reported for each
architecture. But, it was limited to the model trained us-
ing only ImageNet images. When the paper that proposed
the architecture and the paper that reported the best per-
formance was different, we cite both papers. When the ar-
chitecture is different, the comparison of FLOPs often fails
to reflect the actual throughput. Therefore, we re-measured
the GPU throughput and number of params on a single
V100 GPU and compared the top-1 accuracy for the per-
formance index. Table 3 shows the comparison result. In
the case of the PiT-B scale, the transformer-based archi-



Network
# of

params
Throughput
(imgs/sec)

Accuracy

ResNet18 [13, 42] 11.7M 4545 72.5%
MobileNetV2 [29] 3.5M 3846 72.0%
MobileNetV3 [19] 5.5M 3846 75.2%

EfficientNet-B0 [32] 5.3M 2857 77.1%
ViT-Ti [33] 5.7M 2564 72.2%

PiT-Ti 4.9M 3030 73.0%
ViT-Ti⚗ [33] 5.7M 2564 74.5%

PiT-Ti⚗ 4.9M 3030 74.6%

ResNet34 [13, 38] 21.8M 2631 75.1%
ResNet34D [14, 38] 21.8M 2325 77.1%
EfficientNet-B1 [32] 7.8M 1754 79.1%

PiT-XS 10.6M 2128 78.1%
PiT-XS⚗ 10.6M 2128 79.1%

ResNet50 [13, 42] 25.6M 1266 80.2%
ResNet101 [13, 42] 44.6M 757 81.6%
ResNet50D [14, 38] 25.6M 1176 80.5%
EfficientNet-B2 [32] 9.2M 1333 80.1%
EfficientNet-B3 [32] 12.2M 806 81.6%
RegNetY-4GF [27] 20.6M 1136 79.4%

ResNeSt50 [43] 27.5M 877 81.1%
ViT-S [33] 22.1M 980 79.8%

PiT-S 23.5M 1266 80.9%
ViT-S⚗ [33] 22.1M 980 81.2%

PiT-S⚗ 23.5M 1266 81.9%

ResNet152 [13, 42] 60.2M 420 81.9%
ResNet101D [14, 38] 44.6M 354 83.0%
ResNet152D [14, 38] 60.2M 251 83.7%
EfficientNet-B4 [32] 19.3M 368 82.9%
RegNetY-16GF [27] 83.6M 352 80.4%

ResNeSt101 [43] 48.3M 398 83.0%
ViT-B [9, 33] 86.6M 303 81.8%

PiT-B 73.8M 348 82.0%
ViT-B⚗ [9, 33] 86.6M 303 83.4%

PiT-B⚗ 73.8M 348 84.0%

Table 3. ImageNet performance. We compare our PiT-(Ti, XS, S,
and B) models with the counterparts which have a similar number
of parameters. ⚗ means a model trained with distillation [33].

tecture (ViT-B, PiT-B) outperforms the convolutional ar-
chitecture. Even in the PiT-S scale, PiT-S shows superior
performance than convolutional architecture (ResNet50) or
outperforms in throughput (EfficientNet-b3). However, in
the case of PiT-Ti, the performance of convolutional ar-
chitectures such as ResNet34 [13], MobileNetV3 [19], and
EfficientNet-b0 [32] outperforms ViT-Ti and PiT-Ti. Over-
all, the transformer architecture shows better performance
than the convolutional architecture at the scale of ResNet50
or higher, but it is weak at a small scale. Creating a light-
weight transformer architecture such as MobileNet is one of
the future works of ViT research.

Additionally, we conduct experiments on two extended

Setting Architecture
Throughput
(imgs/sec)

Accuracy

Long
training

(1000 epochs)

ViT-Ti⚗ [33] 2564 76.6%
PiT-Ti⚗ 3030 76.4%
PiT-XS⚗ 2128 80.6%

ViT-S⚗ [33] 980 82.6%
PiT-S⚗ 1266 82.7%

ViT-B⚗ [33] 303 84.2%
PiT-B⚗ 348 84.5%

Large resolution
(384×384)

ViT-B [33] 91 83.1%
PiT-B 82 83.0%

ViT-B⚗ [33] 91 84.5%
PiT-B⚗ 82 84.6%

Table 4. Extended training settings. We compare the perfor-
mance of PiT with ViT for long training (1000 epochs) and fine-
tune on large resolution (384×384)

Backbone
Avg. Precision at IOU

Params.
Latency

AP AP50 AP75 (ms / img)

ResNet50 [13] 41.5 60.5 44.3 41.0 M 49.7
ViT-S [33] 36.9 57.0 38.0 34.9 M 55.2

PiT-S 39.4 58.8 41.5 36.6 M 46.9

Table 5. COCO detection performance based on Deformable
DETR [44]. We evaluate the performance of PiT as a pretrained
backbone for object detection.

training schemes: long training and fine-tune on large reso-
lution. Table 4 shows the results. As shown in the previous
study [33], the performance of ViT is significantly improved
on the long training scheme (1000 epochs). So, we vali-
date PiT on the long training scheme. As shown in Table 4,
PiT models show comparable performance with ViT mod-
els on the long training scheme. Although the performance
improvement is reduced than the Distill⚗ setting, PiTs still
outperform ViT counterparts in throughput. Fine-tuning on
large resolution (384 × 384) is a famous method to train a
large ViT model with small computation. In the large res-
olution setting, PiT has comparable performance with ViT,
but, worse than ViT on throughput. It implies that PiT is
designed for 224 × 224 and the design is not compatible
for the large resolution. However, we believe that PiT can
outperform ViT with a new layer design for 384× 384.

4.2. Object detection

We validate PiT through object detection on COCO
dataset [24] in Deformable-DETR [44]. We train the detec-
tors with different backbones including ResNet50, ViT-S,
and our PiT-S. We follow the training setup of the origi-
nal paper [44] except for the image resolution. Since the
original image resolution is too large for transformer-based
backbones, we halve the image resolution for training and



Standard Occ IN-A [15] BGC [40] FGSM [10]

PiT-S 80.8 74.6 21.7 21.0 29.5
ViT-S [33] 79.8 73.0 19.1 17.6 27.2

ResNet50 [13] 76.0 52.2 0.0 22.3 7.1
ResNet50† [38] 79.0 67.1 5.4 32.7 24.7

Table 6. ImageNet robustness benchmarks. We compare three
comparable architectures, PiT-B, ViT-S, and ResNet50 on var-
ious ImageNet robustness benchmarks, including center occlu-
sion (Occ), ImageNet-A (IN-A), background challenge (BGC),
and fast sign gradient method (FGSM) attack. We evaluate two
ResNet50 models from the official PyTorch repository, and the
well-optimized implementation [38], denoted as †.

test of all backbones. We use bounding box refinement and a
two-stage scheme for the best performance [44]. For multi-
scale features for ViT-S, we use features at the 2nd, 8th, and
12th layers following the position of pooling layers on PiT.
All detectors are trained for 50 epochs and the learning rate
is dropped by factor 1/10 at 40 epochs.

Table 5 shows the measured AP score on val2017. The
detector based on PiT-S outperforms the detector with ViT-
S. It shows that the pooling layer of PiT is effective not only
for ImageNet classification but also for pretrained backbone
for object detection. We measured single image latency with
a random noise image at resolution 600×400 PiT based de-
tector has lower latency than detector based on ResNet50 or
ViT-S. Although PiT detector cannot beat the performance
of the ResNet50 detector, PiT detector has better latency,
and improvement over ViT-S is significant. Additional in-
vestigation on the training settings for PiT based detectors
would improve the performance of the PiT detector.

4.3. Robustness benchmarks

In this subsection, we investigate the effectiveness of the
proposed architecture in terms of robustness against input
changes. We presume that the existing ViT design concept,
which keeps the spatial dimension from the input layer to
the last layer, has two conceptual limitations: Lack of back-
ground robustness and sensitivity to the local discriminative
visual features. We, therefore, presume that PiT, our new
design choice with the pooling mechanism, performs better
than ViT for the background robustness benchmarks and the
local discriminative sensitivity benchmarks.

We employ four different robustness benchmarks. Oc-
clusion benchmark measures the ImageNet validation ac-
curacy where the center 112 × 112 patch of the images
is zero-ed out. This benchmark measures whether a model
only focuses on a small discriminative visual feature or not.
ImageNet-A (IN-A) is a dataset constructed by collecting
the failure cases of ResNet50 from the web [15] where the
collected images contain unusual backgrounds or objects
with very small size [23]. From this benchmark, we can in-

fer how a model is less sensitive to unusual backgrounds
or object size changes. However, since IN-A is constructed
by collecting images (queried by 200 ImageNet subclasses)
where ResNet50 predicts a wrong label, this dataset can
be biased towards ResNet50 features. We, therefore, em-
ploy background challenge (BGC) benchmark [40] to ex-
plore the explicit background robustness. The BGC dataset
consists of two parts, foregrounds, and backgrounds. This
benchmark measures the model validation accuracy while
keeping the foreground but adversarially changing the back-
ground from the other image. Since BGC dataset is built
upon nine subclasses of ImageNet, the baseline random
chance is 11.1%. Lastly, we tested adversarial attack robust-
ness using the fast gradient sign method (FGSM) [10].

Table 6 shows the results. First, we observe that PiT
shows better performances than ViT in all robustness bench-
marks, despite they show comparable performances in the
standard ImageNet benchmark (80.8 vs. 79.8). It supports
that our dimension design makes the model less sensitive to
the backgrounds and the local discriminative features. Also,
we found that the performance drops for occluded samples
by ResNet50 are much dramatic than PiT; 80.8 → 74.6,
5% drops for PiT, 79.0 → 67.1, 15% drops for ResNet50.
This implies that ResNet50 focuses more on the local dis-
criminative areas, by the nature of convolutional operations.
Interestingly, in Table 6, ResNet50 outperforms ViT vari-
ants in the background challenge dataset (32.7 vs. 21.0).
This implies that the self-attention mechanism unintention-
ally attends more backgrounds comparing to ResNet design
choice. Overcoming this potential drawback of vision trans-
formers will be an interesting research direction.

5. Conclusion
In this paper, we have shown that the design principle

widely used in CNNs - the spatial dimensional transfor-
mation performed by pooling or convolution with strides,
is not considered in transformer-based architectures such
as ViT; ultimately affects the model performance. We have
first studied with ResNet and found that the transformation
in respect of the spatial dimension increases the computa-
tional efficiency and the generalization ability. To leverage
the benefits in ViT, we propose a PiT that incorporates a
pooling layer into Vit, and PiT shows that these advantages
can be well harmonized to ViT through extensive experi-
ments. Consequently, while significantly improving the per-
formance of the ViT architecture, we have shown that the
pooling layer by considering spatial interaction ratio is es-
sential to a self-attention-based architecture.
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