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Abstract. Rotary Position Embedding (RoPE) performs remarkably
on language models, especially for length extrapolation of Transform-
ers. However, the impacts of RoPE on computer vision domains have
been underexplored, even though RoPE appears capable of enhancing
Vision Transformer (ViT) performance in a way similar to the language
domain. This study provides a comprehensive analysis of RoPE when
applied to ViTs, utilizing practical implementations of RoPE for 2D
vision data. The analysis reveals that RoPE demonstrates impressive
extrapolation performance, i.e., maintaining precision while increasing
image resolution at inference. It eventually leads to performance im-
provement for ImageNet-1k, COCO detection, and ADE-20k segmenta-
tion. We believe this study provides thorough guidelines to apply RoPE
into ViT, promising improved backbone performance with minimal extra
computational overhead. Our code and pre-trained models are available
at https://github.com/naver-ai/rope-vit

1 Introduction

Transformers [34] have become popular due to their strong performance across
various tasks in language and computer vision domains [5, 6]. The transformer
treats input data as a sequence of tokens. The tokens equally interact with others
through a self-attention mechanism [34]. Since the self-attention mechanism is
independent of the token index or positions (i.e., permutation invariance), the
transformer requires additional position information, usually injected by position
embedding [5,23,27,34]. The position embeddings give the position information
to input tokens with specific embedding designed for the transformer. They
uniquely differentiate tokens based on their locations rather than their contents.
Thus, the position information of self-attention heavily depends on the position
embedding, which is a crucial component in designing transformer architectures.

There are two primary methods in position embedding for Vision Trans-
formers: Absolute Positional Embedding (APE) [5,6] and Relative Position Bias
(RPB) [17,23,27]. APE utilizes the absolute position of tokens for position em-
bedding through sinusoidal or learnable embedding. Otherwise, RPB enables rel-
ative positions between tokens by adding relative biases to the attention matrix
of the self-attention layers. In general, APE is used for traditional ViT architec-
ture [6], and RPE is preferred to hierarchical ViT like Swin Transformer [17].
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Although both position embeddings are effective for the transformer on fixed-
resolution settings, they struggle with resolution changes, requiring flexibility
and extrapolation in position embeddings. Considering that the resolution of
pre-training is usually smaller than that of downstream dense prediction, it
might degrade ViT performance in various applications, such as multi-resolution
recognition, object detection, and segmentation.

This paper aims to improve position embedding for vision transformers by
applying an extended Rotary Position Embedding (RoPE) [29]. RoPE is a rela-
tive position embedding that is specially designed for extrapolation in language
domains. Despite the remarkable success of RoPE in Large-Language Mod-
els [12, 26, 33], its effectiveness in vision tasks has not been validated due to
limited investigation. In this paper, we provide a comprehensive investigation
of RoPE for transformers in vision recognition tasks. Our investigation starts
with 1D to 2D expansion of RoPE to cope with images rather than original
language inputs. Although 2D RoPE using axial frequencies was used in pioneer
works [7,18,19], we argue that it lacks the ability to handle diagonal directions,
which are preferred in convolution networks by the square kernel. To cope with
the diagonal direction of RoPE, we propose to use mixed axis frequencies for 2D
RoPE, named RoPE-Mixed. Since RoPE-Mixed uses frequencies for both axes
as learnable network parameters, it effectively handles diagonal direction and is
more suitable for ViT’s attention than Axial 2D RoPE.

In experiments, we apply variants of 2D RoPE to representative transformer
architectures, ViT and Swin Transformer, and validate the effects of 2D RoPE
in various tasks, including multi-resolution classification on ImageNet-1k [4], ob-
ject detection on MS-COCO [16], and semantic segmentation on ADE20k [40,41].
The results show that 2D RoPE is a beneficial option for position embedding
in transformers with impressive performance improvements on high-resolution
images, i.e., extrapolation of images. We believe our study demonstrates the sig-
nificant impact of 2D RoPE in vision domains and contributes to future research
by suggesting a beneficial option in position embedding for vision transformers.

2 Related Works

Position embedding. ViT [6] introduces a transformer [34] architecture for
visual inputs, employing Absolute Positional Embedding (APE) [5,6]. APE with
learnable parameters effectively injects spatial positions of each token to be used
for the self-attention mechanism. Hierarchical ViT such as Swin Transformer [17]
increase the spatial length of tokens at early layers using pooling. To handle
a large number of tokens with limited position embeddings, Relative Position
Bias (RPB) [17, 23, 27] is preferred by the hierarchical ViTs. Studies have been
conducted to improve position embedding for ViT based on these two major
position embeddings. iRPE [36] proposes an improved RPB by applying relative
position embedding as multiplication with query vector. CPE [3] finds that a
convolution network can effectively inject relative position information to tokens
and utilizes 3×3 depth-wise convolution [10] as conditional position embedding.
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LaPE [38] shows that simple scaling with adaptive layer-norm can improve the
positional embedding of various networks.

RoPE in vision modeling. Pioneering studies introduced RoPE to ViT-
related architectures. Hybrid X-former [11] applies 1D RoPE to ViT variants
named Vision X-formers; it is the first attempt at the application of RoPE in
ViT to our knowledge. However, 1D RoPE is insufficient to demonstrate perfor-
mance, and evaluation is limited to small datasets such as CIFAR [13] and Tiny
ImageNet [14]. EVA-02 [7] introduces 2D Axial RoPE to a new language-aligned
vision model EVA-02, like CLIP [22]. Unified-IO 2 [18] uses 2D RoPE for new
multi-modal modeling; 2D Axial RoPE is applied to non-text modalities, includ-
ing vision, audio, and video. In diffusion modeling [25], FiT [19] applies 2D Axial
RoPE for their new diffusion model. In these studies, 2D Axial RoPE was used to
improve new model performance on language-related or generation tasks, which
differs from our goal of challenging classification, detection, and segmentation
tasks. Exploring the impacts of 2D RoPE implementations in basic architectures
with general training recipes could benefit diverse vision researchers.

Multi-resolution inference. Unlike ConvNets [8], ViT [6] requires a transfor-
mation in position embedding for multi-resolution inference. Some studies inves-
tigated a multi-resolution inference method for ViT. CAPE [15] analyzes ViT’s
position embedding in resolution changes and finds that augmenting position em-
bedding improves the multi-resolution performance of ViT. Thus, they propose
a new training recipe that includes continuous augmenting of position embed-
ding (CAPE). ResFormer [30] shows that relative position embedding based on
depth-wise convolution layer benefits multi-resolution inference. Using this prop-
erty, the study proposes an improved ViT architecture with global and local
depth-wise conv embedding. It substantially improves multi-resolution perfor-
mance with multi-resolution self-distillation learning recipes. In contrast to con-
ventional multi-resolution, FlexiViT [1] proposes a ViT with flexible patch sizes
that can replace multi-resolution inference. In FlexiViT, ViT increases the patch
size instead of increasing input resolution. By training with a multi-patch-size
training scheme and distillation using ViT-B/8 [28], FlexiViT exhibits remark-
able performance for various patch-size, which corresponds to multi-resolution
in computation cost aspect.

These studies require special training methods, which make them difficult
to combine with other training recipes, potentially reducing general applicabil-
ity. RoPE improves multi-resolution performance while using existing training
recipes as is, offering generally applicable and easy-to-use compared to others.

3 Method

Rotary Position Embedding (RoPE) [29] was introduced to apply to key and
query in self-attention layers as channel-wise multiplications, which is distinct
from conventional position embeddings - APE is added to the stem layer; RPB is
added to an attention matrix. We first present conventional position embeddings,
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including RoPE [29] in language model at §3.1, and provide feasible expansion
of RoPE to 2D inputs for transformers in the vision domain in subsequent §3.2.
In §3.3, we describe the characteristics of RoPE compared to other position
embedding and analysis for 2D RoPE.

3.1 Preliminary: Introducing Position Embeddings

Absolute Positional Embedding (APE) [5, 6, 34] is the most common
position embedding for Vision Transformer (ViT). APE is generally added to
the feature right after the patchification layer computes tokens from 16× 16 or
32 × 32 patch images. For patch tokens x0 ∈ RN×d, APE EAPE ∈ RN×d gives
the position information for each token by addition:

x′
0 = x0 +EAPE . (1)

The tokens with APE x′
0 are fed to transformer blocks and utilized as a feature

merged with the absolute positional information. There are two variants on how
to build EAPE : sinusoidal and learnable embedding. Sinusoidal embedding uses
axial sinusoidal functions as APE. When APE for position pn = (pxn, p

y
n) is

denoted as EAPE(pn) ∈ Rd, t-th dim of sinusoidal embedding EAPE(pn, t) is

EAPE(pn, 4t) = sin(pxn/10
4t/⌊ d

4 ⌋), EAPE(pn, 4t+ 1) = cos(pxn/10
4t/⌊ d

4 ⌋), (2)

EAPE(pn, 4t+ 2) = sin(pyn/10
4t/⌊ d

4 ⌋), EAPE(pn, 4t+ 3) = cos(pyn/10
4t/⌊ d

4 ⌋).

Note that we use 0-base numbers for indexes pxn, pyn, and t. The other implemen-
tation of APE is to use learnable parameters and train them with the training
process. N × d learnable parameters are randomly initialized and are used as
Eq. 1. It is the simplest way for APE, and supervised learning recipes use APE
with learnable parameters [6,31,32]. Since learnable APE is commonly used for
ViT, we refer to it as the default option for APE.

Relative Position Bias (RPB) [17, 23] is a popular way to inject relative
distances to the ViT architectures. APE is not suitable for handling tokens
based on their relative positions, as it relies solely on absolute positions in the
image pn = (pxn, p

y
n). It is necessary to use different types of position embedding

that utilize relative positions p̃nm = (p̃xnm, p̃ynm) = (pxn − pxm, pyn − pym). RPB is
widely used relative position embedding for ViT. In contrast to learnable APE,
which has learnable parameters for each absolute position, RPB uses learnable
parameters for each relative position. i.e., Relative Position Bias (RPB) table T
is defined as learnable parameters for every possible relative position:

T = {Tp̃xp̃y ∈ R | p̃x ∈ {−W, . . . , 0, . . . ,W}, p̃y ∈ {−H, . . . , 0, . . . ,H}} . (3)

While APE is added to network features, RPB is directly applied to the attention
matrix of every self-attention layer since it is the only position that can handle
relative relations in transformer architecture. The attention matrix A ∈ RN×N

with the query and key of a head denoted by q,k ∈ RN×dhead , is calculated

A = SoftMax(qkT /
√

dhead). (4)
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To fit with the attention matrix, the RPB table T ∈ R2W×2H is rearranged to
RPB embedding ERPB ∈ RN×N where (n,m)-th component ERPB

nm is

ERPB
nm = Tp̃x

nmp̃y
nm

= T(px
n−px

m)(py
n−py

m). (5)

Then, RPB is added to the attention matrix in Eq. 4 as

A = SoftMax(qkT /
√
dhead) +ERPB . (6)

By RPB, self-attention handles relative positions. Note that we describe RPB for
a head in a multi-head self-attention layer. Thus, in practice, RPB parameters
and addition are repeated for each head in multi-head attention.

Rotary Position Embedding (RoPE) [29] is a recent method in the line
of relative position embedding studies. Although RPB delivers relative position
to the attention, simple addition as bias may limit interaction with attention
weights, which causes limited utilization of relative position. Thus, RoFormer [29]
proposes a novel relative position embedding method: Rotary Position Embed-
ding (RoPE). Note that this section explains the original RoPE designed for
language modeling. We will explain our RoPE for 2D images in §3.2

Limitations of RPB emerge from the addition to the attention matrix. Since
RPB is applied to the attention matrix after query-key multiplication, it cannot
affect and contribute to the query-key similarity, which is the core operation of
self-attention. To resolve this limitation, RoPE introduces the multiplication of
Euler’s formula (eiθ) to key and query vectors as relative position embedding.
i.e., when n,m-th query and key is qn,km ∈ R1×dhead , RoPE is applied as

q′
n = qne

inθ, k′
m = kmeimθ. (7)

Then, (n,m)-th component of attention matrix is calculated as

A′
(n,m) = Re[q′

nk
′∗
m] = Re[qnk

∗
mei(n−m)θ], (8)

where Re[·] denotes real part of complex number and ∗ means complex conju-
gates. By multiplying complex rotation eiθn, eiθm depending on token position
(n,m), RoPE injects relative positions (n − m) to the attention matrix in ro-
tation form. In practical implementation, RoPE converts qn,km ∈ R1×dhead

to complex vector q̄n, k̄m ∈ C1×(dhead/2) by considers (2t)-th dim as real part
and (2t + 1)-th dim as imaginary part. It produces the same attention value
as qnk

T
m = Re[q̄nk̄

∗
m] but reduces computational wastes. Also, RoPE utilizes

multiple frequencies θt using channel dimensions of key and query as

θt = 10000−t/(dhead/2), where t ∈ {0, 1, ..., dhead/2}. (9)

In summary, a rotation matrix R ∈ CN×(dhead/2) is defined as

R(n, t) = eiθtn (10)
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and applied to query and key with the Hadamard product ◦ as

q̄′ = q̄ ◦R, k̄′ = k̄ ◦R, A′ = Re[q̄′k̄′∗]. (11)

Note that the attention matrix with RoPE A′ implies relative position in ro-
tation form ei(n−m)θt for (dhead/2) number of frequencies, which gives a lot of
performance beneficial to the transformer, especially for extrapolation on infer-
ence stage based on periodic functions.

3.2 RoPE for 2D images

RoPE exhibits remarkable performance in the language domain. However, only
a few studies have explored using RoPE in the vision domain with 2D input, as
it was designed solely for 1D input. This section introduces feasible implemen-
tations of 2D RoPE for input images: axial and learnable frequency.

Axial frequency. A typical way to expand 1D position embedding to 2D is
repeating 1D operation for each axis. Similar to 2D sinusoidal embedding in
Eq. 2, axial frequency is to divide embedding dimensions into two and apply
position embedding for the x-axis and y-axis separately. It is straightforward
because it is technically the same as repeating 1D embedding twice.

First, we need to change the 1D token index n in RoPE to a 2D token position
pn = (pxn, p

y
n) where pxn ∈ {0, 1, ...,W}, pyn ∈ {0, 1, ...,H} for token width W and

height H. Thus, the rotation matrix R ∈ CN×(dhead/2) in Eq. 10 is changed as

R(n, 2t) = eiθtp
x
n , R(n, 2t+ 1) = eiθtp

y
n . (12)

Also, the range of position indexes (pxn, pyn) is reduced by square root. It is natural
to reduce RoPE frequencies θt in Eq. 9 by square root as

θt = 100−t/(dhead/4), where t ∈ {0, 1, ..., dhead/4}. (13)

Note that θt for vision is often larger than that of language, and the number of
frequencies is halved to cover both (x, y) dimensions with dhead as well. This
axial frequency has been used in a few pioneering works [7, 18, 19] to further
improve the performance of a new ViT architecture.

Mixed learnable frequency. The axial frequency is a simple but effective way
to expand RoPE for the vision domain. However, it is unable to handle diago-
nal directions since the frequencies only depend on a single axis. RoPE injects
relative positions in the form of Euler’s formula (eiθt(n−m)). Thus, with axial
frequencies, the relative positions are applied as axial directions eiθt(p

x
n−px

m) or
eiθt(p

y
n−py

m), which cannot be converted to mixed frequency ei(θ
x
t p̃

x
nm+θy

t p̃
y
nm). In

the case of sinusoidal APE in Eq. 2, the sinusoidal functions can be mixed with
another axis through query-key multiplication in the self-attention layer. How-
ever, RoPE already spends query-key multiplication for position subtraction for
relative distance. There is no way to mix axial frequencies for diagonal direction.
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We conjecture that it might degrade RoPE’s potential performance and make
sub-optimal axial frequency choices in the vision domain.

To handle mixed frequencies, we propose to use a rotation matrix in Eq. 10
in mixed axis form as

R(n, t) = ei(θ
x
t p

x
n+θy

t p
y
n). (14)

By using two frequencies for each axis, RoPE allows handling of the diagonal
axis. The RoPE attention matrix in Eq. 8 is changed by mixed frequency as

A′
(n,m) = Re[qnk

∗
mei(θ

x
t (p

x
n−px

m)+θy
t (p

y
n−py

m))]. (15)

This formulation is identical to the axial frequency implementation as θxt or
θyt goes to zero. Thus, mixed frequency RoPE is a generalized version of axial
frequency RoPE. Different from fixed frequencies in language RoPE and axial
frequency, we let the network learn frequencies (θxt , θ

y
t ) for t ∈ {0, 1, ..., dhead/2}

as learnable parameters. Our mixed learnable frequency implementation enables
diagonal direction handling to RoPE and makes RoPE learnable, like conven-
tional positional embedding in the vision domain. Like RPB, we use separate
sets of learnable frequencies for each head and every self-attention layer. It pro-
duces d learnable parameters per self-attention layer. However, it is negligible
since it requires only ∼0.01% of network parameters in ViT-B.

3.3 Discussion

2D Fourier analysis. We design a 2D Fourier analysis to demonstrate the
representational difference between RoPE-Axial and RoPE-Mixed. When all 2D
frequencies are utilized, a 2D Fast Fourier Transform (FFT) followed by an in-
verse Fast Fourier Transform (iFFT) perfectly reconstructs the input. However,
the number of RoPE frequencies is limited to dhead

2 as in Eq. 9. dhead

2 (= 32
for ViT-B) frequencies are insufficient to cover all 2D frequencies, resulting in
imperfect reconstructions. This imperfect reconstruction reflects the expressive-
ness and representation pattern of the frequencies. In Fig. 1, we compare 2D
FFT-iFFT results of RoPE-Axial and RoPE-Mixed frequencies. Note that we
use RoPE-Mixed frequencies from ViT-B trained on ImageNet-1k. The results
show a significant difference: Axial frequencies exhibit artifacts along axial lines,
impairing precise positional representation, whereas Mixed frequencies utilize
diverse 2D frequencies to produce sharper locations. Thus, we claim that the
mixed frequencies are necessary for precise localization in the attention, which
explains why RoPE-Mixed performs better than RoPE-Axial in §4.

On image resolution changes. Vision models use diverse image resolutions
depending on the goal of target tasks. For example, image classification uses
224 × 224 as the standard resolution for comparison but utilizes small resolu-
tions [32, 35] for training efficiency and enlarges resolutions to boost the per-
formance additionally. Furthermore, object detection and segmentation prefer
larger resolutions to capture small objects. Thus, transformers for vision should
support resolution changes, which is linked to the necessity of resolution change
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FFT 
& iFFT

Input pos Axial freq. Mixed freq.

FFT 
& iFFT

Input pos Axial freq. Mixed freq.

Fig. 1: 2D Fourier reconstruction with RoPE frequencies. We perform a Fast
Fourier Transform (FFT) followed by an inverse FFT with only RoPE frequencies to
evaluate the representation capabilities of RoPE frequencies
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Fig. 2: Attention distances of ViT-B for APE/RoPE. We measure the average
distance of attention interaction by computing the distance between query-key tokens
from attention probabilities. We average the distance across the validation set.

in position embedding. RoPE makes an extended position embedding based on
sinusoidal function for large resolution. Different from zero-padding in RPB, the
rotation matrix in Eq. 12 and Eq. 14 can produce values for extended positions
since it is based on periodic functions, which has proven its effectiveness for
extrapolation [26, 33]. We expect that the advantage of RoPE in extrapolation
will also be effective for multi-resolution benchmark in §4.1 and dense prediction
tasks in §4.2 and §4.3.

Phase shift in RoPE. In sinusoidal representation, phase shift such as ϕ in
ei(m−n)θ+iϕ is an important ability to control activation area. This phase shift
ability is already included in Wq and Wk of the self-attention layer. Based on
Eq. 8, when we apply ei(m−n)θ+iϕ and qn = xnWq, the equation is

xnWqe
i(n−m)θ+iϕk∗

m = xnWqe
iϕk∗

mei(n−m)θ = xnW
′
qk

∗
mei(n−m)θ. (16)

Thus, RoPE does not need additional parameters for phase shift ϕ since learnable
parameters Wq and Wk can do the same role in network training.

Analyzing attention. We analyze the attention matrix of RoPE ViT com-
pared to the ViT with APE. Following attention analysis in literature [9,20], we
measure attention distances and entropy on the ImageNet-1k validation set with
various resolutions. Attention distance refers to the average spatial distance in-
volved in attention interaction. Attention entropy represents the entropy values
of attention probabilities, indicating the sharpness of attention. The averaged
attention distances are shown in Fig. 2. In training resolution 224× 224, RoPEs
increase attention distance at the middle layers but decrease it in the second
and later layers. In other resolutions, the pattern is similar, but the difference is
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Fig. 3: Entropy of attention in ViT-B with APE or RoPE. Entropy of attention
probability is measured for every self-attention of ViT-B. A high entropy value indicates
that a large number of tokens are involved in the attention interaction.

more significant than the training resolution. In short, RoPEs increase attention
distance at the middle layers, which becomes substantial at resolution changes.
The entropy results are reported in Fig. 3. Interestingly, the pattern is similar to
attention distance. Entropy of RoPE is larger than that of APE at the middle
layers. These analysis results imply that RoPE makes attention interact with
long-range (attention distance) and various tokens (entropy). We speculate that
these differences in attention contributed to the performance improvement of
RoPE observed in §4.

Computation costs. Although RoPE has an involved formulation compared
with APE and RPB, its computation cost is negligible to the overall computa-
tion. The rotation matrix in Eq. 12 and 14 is pre-computed before inference.
The Hadamard product in Eq. 11 is the only computation required for inference
- 1.8M FLOPs for ViT-B and accounts for only 0.01% of ViT-B’s 17.6G FLOPs.

4 Experiments

We apply 2D RoPE to two representative ViT architectures: ViT [6] and Swin
Transformer [17]. Note that ViT uses APE, whereas Swin Transformer uses
RPB. Thus, our experiment can verify the performance of RoPE when it re-
places APE or RPB. RoPE in ViT and Swin Transformer is validated for image
recognition, including multi-resolution classification (§4.1) on ImageNet-1k [4],
object detection (§4.2) on MS-COCO [16], and semantic segmentation (§4.3)
on ADE20k [40, 41]. We compare the conventional position embeddings (APE,
RPB) with two variants of 2D RoPE RoPE-Axial (Eq. 12) and RoPE-Mixed
(Eq. 14). Our experiments will exhibit the remarkable performance of 2D RoPE
across all tasks, particularly with a significant margin in extrapolation.

4.1 Multi-resolution classification

Robustness on multi-resolution inputs is an essential factor of ViT performance,
as it is closely related to their downstream performance in dense prediction
tasks. In language models [12,26,33], RoPE exhibited strong extrapolation per-
formance, i.e., text sequence longer than training samples. 2D RoPE might be
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Fig. 4: Multi-resolution performance of ViTs. We apply two variants of 2D
RoPE, RoPE-Axial, and RoPE-Mixed, to the ViT architectures. All ViTs are trained
on ImageNet-1k [4] with DeiT-III [32]’s 400 epochs training recipe.

suitable for large-resolution images, leveraging its extrapolation capabilities. We
train ViTs and Swin Transformers on ImageNet-1k [4] training set with high-
performance training recipes [17,32]. We report the accuracy on the ImageNet-1k
validation set as varying image sizes. Note that we use the ImageNet-1k standard
image resolution 224 × 224 for training. Thus, a resolution larger than 224 can
be considered as extrapolation.

Vision Transformer (ViT). We apply 2D RoPE to ViT-S, ViT-B, and ViT-L.
We train ViT with a strong supervised learning training recipe for ImageNet-1k,
DeiT-III 400 epochs training recipe. When applying RoPE to ViT, we remove
APE from ViT by default. Thus, 2D RoPE is the only position embedding for
RoPE ViT. We denote ViT uses both RoPE and APE as RoPE+APE.

In Fig. 4, we compare 2D RoPE variants with APE for ViT position embed-
ding. Both 2D RoPE, RoPE-Axial, and RoPE-Mixed implementations outper-
form APE for resolutions larger than 224, i.e., extrapolation cases. As expected,
the strong extrapolation performance of RoPE can be extended to image recogni-
tion tasks. In comparison between RoPE-Axial and RoPE-Mixed, RoPE-Mixed
performs better than RoPE-Axial in all input resolutions, meaning learnable
frequencies for mixed axes are beneficial for classification.

We measure the performance of RoPE-Mixed when it is used with APE. The
left side of Fig. 6 shows the performance of RoPE-Mixed with APE (RoPE-Mixed
+ APE) compared to RoPE-Mixed and APE. Note that we report accuracy im-
provement over APE for RoPE models to improve visualization. When used with
RoPE, APE is beneficial for interpolation (res < 224) but reduces improvement
on extrapolation (res > 224). RoPE+APE is almost double the improvement of
RoPE-Mixed in interpolation, while the disadvantage in extrapolation is com-
parably small. Thus, RoPE+APE is a considerable choice for applying RoPE to
ViT-based architectures on the target resolution of the tasks.
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Fig. 5: Multi-resolution performance of Swin Transformers. We replace RPB
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Fig. 6: RoPE with conventional position embedding. We report multi-resolution
performance when RoPE is used with conventional position embeddings: APE and
RPB. Performance improvement over baseline is reported to improve visualization.

Swin Transformer 2D RoPE variants are applied to Swin Transformers, a
milestone work in hierarchical ViT with relative position embedding RPB. The
experiment in Swin Transformer investigates whether RoPE can replace RPB or
work efficiently in a hierarchical ViT. We train Swin-T, Swin-S, and Swin-B on
ImageNet-1k with 300 epochs of Swin Transformer training recipe [17]. Similar
to ViT, we replace RPB with 2D RoPE for comparison. Thus, RoPE Swin (i.e.
Swin Transformer armed with RoPE) does not use RPB by default. A Swin
Transformer using both position embedding is dubbed RoPE+RPE.

Fig 5 shows the multi-resolution performance of various Swin Transformers
with different position embeddings. Two variants of 2D RoPE show remarkable
performance improvements for extrapolation cases (res > 224). Even in interpo-
lation (res < 224), RoPE-Mixed outperforms RPB by a large margin. It means
that RoPE-Mixed is a more suitable option than RPB for Swin Transformers.
When comparing RoPE-Mixed with RoPE-Axial, RoPE-Mixed outperforms in
most resolutions. RoPE-Axial is especially weak in interpolation and significant
extrapolation (res= 384) cases.
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Table 1: MS-COCO object detection with DINO-ViTDet. The table shows MS-
COCO [16] detection performance (box AP). DINO [39] is trained with DINO-ViTDet
12 epochs setting [24]. RoPE is applied to the backbone ViT, which is pre-trained on
ImageNet-1k with DeiT-III 400epochs recipe.

Backbone APE
RoPE

Axial Mixed Axial+APE Mixed+APE

ViT-B 49.4 50.8(+1.4) 51.2(+1.8) 50.7(+1.3) 51.1(+1.7)
ViT-L 51.1 52.2(+1.1) 52.9(+1.8) 52.5(+1.4) 52.8(+1.7)

Table 2: MS-COCO object detection with DINO-Swin. MS-COCO [16] detec-
tion performance (box AP) is reported for Swin Transformer with RoPE. DINO [39]
is trained with DINO Swin 12 epochs setting [24]. Swin Transformers with RoPE or
RPE are pre-trained on ImageNet-1k with Swin Transformer 300epochs recipe.

Backbone RPB
RoPE

Axial Mixed Axial+RPB Mixed+RPB

Swin-T 51.3 51.6(+0.3) 51.8(+0.5) 51.7(+0.4) 51.6(+0.3)
Swin-S 53.0 53.1(+0.1) 53.3(+0.3) 53.5(+0.5) 53.6(+0.6)
Swin-B 54.2 54.4(+0.2) 54.5(+0.3) 54.7(+0.5) 54.5(+0.3)

We also measure performance when RoPE-Mixed is used together with RPB.
The right side of Fig. 6 shows the results. Different from RoPE+APE in ViT,
RoPE+RPB has no performance advantage compared to RoPE-Mixed in all res-
olutions. This implies that RoPE-Mixed effectively replaces RPB as a relative
position embedding. Note that the gap between RoPE-Mixed and RoPE+RPB is
significant when input resolution is far different from training resolution, demon-
strating the advantage of RoPE-Mixed on resolution changes.

4.2 Object detection

We verify 2D RoPE in object detection on MS-COCO [16]. DINO [39] detector is
trained using ViT and Swin as backbone network. We use ImageNet-1k weights
from §4.1 for pre-trained weights, and RoPE is only applied to the backbone. We
use Detrex [24] codebase for detection training. DINO-ViTDet 12 epochs setting
and DINO-Swin 12 epochs setting are used for DINO training.

Table 1 shows the DINO-ViTDet results in bounding box AP. We report four
variants of RoPEs: Axial, Mixed, Axial+APE, and Mixed+APE; all demon-
strate remarkable performance improvements. DINO-ViTDet achieves AP im-
provement of more than +1.0pp by changing positional embedding to RoPE.
Among RoPE variants, RoPE-Mixed shows the best improvement at +1.8pp.
AP in ViT-B and ViT-L. DINO-ViTDet uses ViT backbone with window-block
attention, but still, a few layers remain as global attention. We believe that
RoPE is highly effective due to the extrapolation in global attention.

The performance of DINO-Swin is reported in Table 2. Like DINO-ViTDet,
four variants are reported: Axial, Mixed, Axial+RPB, and Mixed+RPB. RoPE
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Table 3: ADE20k semantic segmentation using the UperNet [37] head. Uper-
Net is trained with ViT backbone following ViT training recipe [21]. The table reports
performance as mIoU metric. We report single-scale and multi-scale evaluation results.

Multi-
scale APE

RoPE

Axial Mixed Axial+APE Mixed+APE

ViT-B
- 47.7 49.0(+1.3) 49.6(+1.9) 49.5(+1.8) 50.0(+2.3)
✔ 48.4 49.9(+1.5) 50.7(+2.3) 50.5(+2.1) 50.9(+2.5)

ViT-L
- 50.8 51.8(+1.0) 51.5(+0.7) 51.6(+0.8) 52.0(+1.2)
✔ 51.6 52.6(+1.0) 52.3(+0.7) 52.4(+0.8) 52.6(+1.0)

Table 4: ADE20k semantic segmentation with Swin-Mask2Former [2].
Mask2Former model for semantic segmentation is trained using Swin Transformer.
The table shows segmentation performance in mIoU metric.

Backbone RPB
RoPE

Axial Mixed Axial+RPB Mixed+RPB

Swin-S 50.2 50.4(+0.2) 51.1(+0.9) 51.2(+1.0) 50.9(+0.7)
Swin-B 51.5 52.0(+0.5) 52.0(+0.5) 50.0(-1.5) 51.4(-0.1)

outperforms RPB for all variants. RoPE-Mixed performs better than RoPE-
Axial. +RPB is beneficial for Axial but has limited effect on Mixed. Perfor-
mance improvement is smaller than DINO-ViTDet since DINO-Swin maintains
a window size of the pre-trained backbone, i.e., DINO-Swin has no extrapola-
tion. However, RoPE achieves meaningful gains and has room for improvement
by increasing the Swin Transformer’s window size for the detection backbone.

4.3 Semantic segmentation

We train 2D RoPE ViT and Swin for semantic segmentation on ADE20k [40,
41]. For ViT, we use UperNet [37] with ViT training recipe [21]. For Swin,
Mask2Former [2] for segmentation is used with the Swin. ImageNet-1k pre-
trained weights from §4.1 are used for pre-trained weights. Also, RoPE is only
applied to the backbone. The networks are trained for 160k iterations.

Table 3 shows ViT-UperNet performances. RoPE-based models achieve im-
pressive performance improvement in all cases. It is noteworthy that Mixed+APE
achieves +2.3 and +2.5 mIoU improvement with only position embedding changes.
The improvement might originate from the extrapolation performance of RoPE
since the ViT-UperNet setting uses 512 × 512 images for inputs. Among the
three variants of RoPE, Mixed+APE shows the best performance in all cases,
which is different from detection results. As shown in Fig. 6, Mixed+APE has an
advantage at interpolation while degrading performance at extrapolation. These
results suggest that the use of APE in a RoPE-based ViT should be adjusted
based on the target task. Swin-Mask2Former performances are shown in Table 4.
RoPE also improves the performance of Swin-based segmentation. RoPE-Mixed
shows impressive performance, while +RPB is only beneficial in limited cases.
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Table 5: Multi-resolution comparison with ResFormer [30]. The table shows
a comparison of RoPE-Mixed based ViTs with ResFormer-S trained for 224 × 224
resolution. RoPE ViT outperforms ResFormer on extrapolation, resolution > 224, and
shows comparable performance at small resolutions.

Test resolution 96 128 160 192 224 288 384 448 512

ResFormer-S 57.8 71.4 77.0 79.6 80.8 81.4 80.7 79.3 77.7
ViT-S 35.4 69.3 76.1 79.1 80.4 80.9 79.4 77.6 75.4
+ RoPE-Mixed 55.7 70.6 76.6 79.6 80.9 82.0 81.8 80.9 79.1
+ RoPE-M + APE 58.5 71.4 76.7 79.5 80.9 82.3 81.7 80.5 78.5

4.4 Comparison with multi-resolution methods

We compare 2D RoPE variants with recent ViT architecture designed for multi-
resolution inference, namely ResFormer [30]. ResFormer uses depth-wise convo-
lutions as the position embedding. It uses sinusoidal APE in Eq. 2 and depth-
wise convolution after the patch-embed layer as Global Position Embedding
(GPE). Also, another depth-wise convolution is used similar to skip-connection
for every self-attention layer to add position embed as Local Position Embed
(LPE). Using GPE and LPE, ResFormer is proposed as an improved ViT for
multi-resolution inference. ResFormer is trained with multi-resolution training
utilizing self-distillation loss. Since self-distillation with multi-resolution train-
ing is not a common recipe in ViT, we use ResFormer-S trained with fixed
resolution 224 × 224 and compare it with RoPE-Mixed ViT-S in §4.1. Table 5
shows a multi-resolution comparison of RoPE-Mixed with ResFormer-S-224.
RoPE-Mixed outperforms ResFormer with a meaningful margin for extrapo-
lation ranges (res > 224), but RoPE-Mixed shows performance lower than Res-
Former for significant interpolation ranges (res ≤ 160). To achieve comparable
interpolation, RoPE-Mixed needs additional APE. Overall, the results show that
RoPE-Mixed+APE outperforms ResFormer-S in multi-resolution inference.

5 Conclusion

Rotary Position Embedding (RoPE) is a novel method for relative position em-
bedding with a lot of potential. However, it has been underexplored in vision
modeling. In this paper, we have conducted a comprehensive investigation of
2D RoPE for Vision Transformer (ViT) and proposed an improved 2D RoPE,
RoPE-Mixed, utilizing mixed axis frequency with learnable parameters. Our ex-
periments show that 2D RoPE is an effective solution for multi-resolution classi-
fication for both ViT and Swin Transformers, particularly for large resolutions.
2D RoPE shows improved performance with a significant margin in downstream
tasks, such as object detection and semantic segmentation. It is noteworthy that
our RoPE-Mixed outperforms conventional 2D RoPE in various tasks, further
enhancing the contribution of this research. We believe that our study will be
useful for vision researchers looking for state-of-the-art performance by suggest-
ing 2D RoPE as a solution for them.
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Appendix

A Experiments (cont’d)

We demonstrated the performance of 2D RoPE with performance graphs through
various input resolutions in the main paper. This appendix provides additional
ablation studies and the entire performance numbers for the multi-resolution
experiments. We measured the performance of ViTs and Swin Transformers with
default position embedding (APE or RPB), 2D RoPE variants (RoPE-Axial and
RoPE-Mixed), and 2D RoPE variants with default position embedding (RoPE-
Axial and RoPE-Mixed + APE or RPB). Note that figures in the paper do not
include small resolutions such as 96× 96 to improve the visualization.

A.1 Impacts of learnable frequencies

Studies on applying RoPE to ViT [7,18,19] have not considered the learnable fre-
quencies. However, a comparison with RoPE-Axial + learnable frequencies can
be an interesting ablation study by revealing the contribution of learnable fre-
quencies on RoPE-Mixed. Table A.1 and Table A.2 show learnable RoPE-Axial
performance compared to fixed RoPE-Axial and RoPE-Mixed. The learnable
frequencies improve RoPE-Axial on high-resolution (384, 512) but are ineffec-
tive on other resolutions. These results imply that the effects of RoPE-Mixed
originate from frequency mixing rather than frequency learning, as we claimed
in the paper.

Table A.1: RoPE-Axial with learnable frequencies for ViT-S.

Resolution 144 192 224 256 320 384 512

Axial 73.6 79.2 80.9 81.7 81.5 80.0 76.1

Axial+learn 73.5 79.1 80.7 81.5 81.8 81.3 77.8
(-0.1) (-0.1) (-0.2) (-0.2) (+0.3) (+1.3) (+1.7)

Mixed 74.2 79.6 80.9 81.8 82.2 81.8 79.1
(+0.6) (+0.4) (0.0) (+0.1) (+0.7) (+1.8) (+3.0)

Table A.2: RoPE-Axial with learnable frequencies for ViT-B.

Resolution 144 192 224 256 320 384 512

Axial 78.9 82.8 83.6 84.2 84.3 83.9 82.0

Axial+learn 78.9 82.7 83.6 84.2 84.4 83.9 82.3
(0.0) (-0.1) (0.0) (0.0) (+0.1) 0.0 (+0.3)

Mixed 79.4 82.8 83.8 84.3 84.7 84.4 82.9
(+0.5) (0.0) (+0.2) (+0.1) (+0.4) (+0.5) (+0.9)
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A.2 Multi-resolution classification – ViT

Table A.3, A.4, and A.5 report the total numbers of multi-resolution classifica-
tion, which is illustrated in Figure 4. 2D RoPE variants outperform APE in the
smallest resolution 96× 96 with significant gap.

Table A.3: Multi-resolution performance of ViT-S. Table reports the perfor-
mance of 2D RoPE variants corresponding to the first graph in Figure 4.

Test resolution

Position embeds 96×96 144×144 192×192 224×224 256×256 320×320 384×384 512×512

APE 35.4 73.6 79.1 80.4 80.9 80.6 79.4 75.4

RoPE-Axial 55.9 73.6 79.2 80.9 81.7 81.5 80.0 76.1
RoPE-Mixed 55.7 74.2 79.6 80.9 81.8 82.2 81.8 79.1

APE + RoPE-Axial 58.4 74.2 79.2 80.7 81.6 81.9 81.2 75.3
APE + RoPE-Mixed 58.5 74.4 79.5 80.9 81.8 82.1 81.7 78.5

Table A.4: Multi-resolution performance of ViT-B. Table reports the perfor-
mance of 2D RoPE variants corresponding to the second graph in Figure 4.

Test resolution

Position embeds 96×96 144×144 192×192 224×224 256×256 320×320 384×384 512×512

APE 57.6 79.1 82.7 83.4 83.8 83.5 82.8 80.5

RoPE-Axial 66.9 78.9 82.8 83.6 84.2 84.3 83.9 82.0
RoPE-Mixed 68.1 79.4 82.8 83.8 84.3 84.7 84.4 82.9

APE + RoPE-Axial 68.9 79.3 82.8 83.7 84.2 84.4 83.8 81.4
APE + RoPE-Mixed 70.2 79.7 83.0 83.8 84.4 84.6 84.3 82.4

Table A.5: Multi-resolution performance of ViT-L. Table reports the perfor-
mance of 2D RoPE variants corresponding to the third graph in Figure 4.

Test resolution

Position embeds 96×96 144×144 192×192 224×224 256×256 320×320 384×384 512×512

APE 61.5 80.8 83.8 84.6 84.9 84.7 84.2 82.2

RoPE-Axial 71.0 80.9 83.9 84.7 85.1 85.3 85.1 84.0
RoPE-Mixed 71.7 81.1 83.9 84.8 85.4 85.7 85.6 84.7

APE + RoPE-Axial 72.4 81.1 84.0 84.7 85.2 85.3 85.1 83.8
APE + RoPE-Mixed 73.2 81.3 84.0 84.9 85.3 85.6 85.5 84.4
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A.3 Multi-resolution classification – Swin Transformer

Table A.6, A.7, and A.8 show the total numbers of multi-resolution classification
of Swin Transformer with 2D RoPE variants corresponding to Figure 5 of paper.
Similar to ViT cases, 2D RoPE variants significantly outperform RPB in small
resolutions: 96× 96 and 128× 128.

Table A.6: Multi-resolution performance of Swin-T. Table reports Swin-T per-
formance with 2D RoPE variants corresponding to the first graph in Figure 5.

Test resolution

Position embeds 96×96 128×128 160×160 192×192 224×224 256×256 320×320 384×384

RPB 39.6 67.4 77.8 79.8 81.2 80.9 80.0 78.9

RoPE-Axial 47.6 69.5 77.6 80.0 81.3 81.6 81.0 79.2
RoPE-Mixed 53.6 71.9 78.4 80.2 81.4 81.7 80.8 79.5

RPB + RoPE-Axial 43.8 67.9 77.8 80.2 81.5 81.6 80.9 79.1
RPB + RoPE-Mixed 50.9 69.4 78.1 80.3 81.5 81.8 80.7 78.5

Table A.7: Multi-resolution performance of Swin-S. Table reports Swin-S per-
formance with 2D RoPE variants corresponding to the second graph in Figure 5.

Test resolution

Position embeds 96×96 128×128 160×160 192×192 224×224 256×256 320×320 384×384

RPB 47.0 72.7 80.2 81.8 82.9 82.8 82.2 81.0

RoPE-Axial 44.0 72.0 79.9 82.0 83.1 83.3 83.0 80.9
RoPE-Mixed 55.7 75.5 80.5 82.3 83.0 83.3 82.9 81.4

RPB + RoPE-Axial 55.4 74.7 80.8 82.4 83.2 83.3 82.8 81.3
RPB + RoPE-Mixed 57.4 75.2 80.8 82.5 83.3 83.4 82.8 81.1

Table A.8: Multi-resolution performance of Swin-B. Table reports Swin-B per-
formance with 2D RoPE variants corresponding to the third graph in Figure 5.

Test resolution

Position embeds 96×96 128×128 160×160 192×192 224×224 256×256 320×320 384×384

RPB 48.8 73.3 80.9 82.3 83.3 83.1 82.3 81.2

RoPE-Axial 52.7 74.3 80.8 82.6 83.6 83.7 83.2 81.8
RoPE-Mixed 61.5 76.7 81.4 82.9 83.7 83.8 83.3 82.1

RPB + RoPE-Axial 55.3 74.4 81.3 82.8 83.6 83.8 83.1 81.5
RPB + RoPE-Mixed 62.2 76.3 81.4 82.8 83.6 83.7 83.1 81.4
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A.4 2D RoPE with APE or RPB

In Figure 6 of the paper, we report the performance improvement of RoPE-Mixed
compared to base position embeddings: APE or RPB. We provide numbers for
Figure 6 in Table A.9 and A.10. Note that each number means performance
improvement (%p.) compared to base position embeddings (APE or RPB).

Table A.9: Performance improvement compared to APE in ViT-B. Table
shows the improvement over APE, which is shown in the left graph of Figure 6.

Test resolution

Position embeds 112×112 128×128 160×160 192×192 224×224 256×256 320×320 384×384 512×512

APE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RoPE-Mixed 1.1 0.5 0.2 0.1 0.4 0.5 1.2 1.6 2.4
RoPE-Mixed + APE 2.2 1.1 0.4 0.3 0.4 0.6 1.1 1.5 1.9

Table A.10: Performance improvement compared to RPB in Swin-B. Table
shows the improvement over RPB, which is shown in the right graph of Figure 6.

Test resolution

Position embeds 128×128 160×160 192×192 224×224 256×256 320×320 384×384

RPB 0 0 0 0 0 0 0

RoPE-Mixed 3.4 0.5 0.6 0.4 0.7 1.0 0.9
RoPE-Mixed + RPB 3.0 0.5 0.5 0.3 0.6 0.8 0.2
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