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Abstract. This paper introduces an efficient fine-tuning method for
large pre-trained models, offering strong in-distribution (ID) and out-of-
distribution (OOD) performance. Breaking away from traditional prac-
tices that need a multitude of fine-tuned models for averaging, our ap-
proach employs significantly fewer models to achieve final weights yet
yield superior accuracy. Drawing from key insights in the weight space
of fine-tuned weights, we uncover a strong link between the performance
and proximity to the center of weight space. Based on this, we introduce
a method that approximates a center-close weight using only two fine-
tuned models, applicable during or after training. Our innovative layer-
wise weight averaging technique surpasses state-of-the-art model meth-
ods such as Model Soup, utilizing only two fine-tuned models. This strat-
egy can be aptly coined Model Stock, highlighting its reliance on selecting
a minimal number of models to draw a more optimized-averaged model.
We demonstrate the efficacy of Model Stock with fine-tuned models based
upon pre-trained CLIP architectures, achieving remarkable performance
on both ID and OOD tasks on the standard benchmarks, all while barely
bringing extra computational demands. Our code and pre-trained models
are available at https://github.com/naver-ai/model-stock.

1 Introduction

Pre-train/fine-tune paradigm [18,22,37,40,41] has proven to be a strong frame-
work for training models to reach state-of-the-art performance. This approach,
especially pivotal in fine-tuning pre-trained models, involves models acquiring
general knowledge during pre-training and task-specific knowledge during fine-
tuning. How we perform a fine-tuning stage is crucial, affecting task performance
and robustness against distribution shifts.

Recent advancements, notably Model Soup [40], which merges weights from
multiple fine-tuned models trained under different training setups, have shown
impressive performance without increasing inference costs. This method is be-
lieved to be effective because these models often reside in the same loss basin,
and their merging results in a lower and flat loss basin. However, Model Soup’s
requirement for multiple fine-tuned models (more than dozens) raises concerns

⋆ Work done during an internship at NAVER AI Lab.
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Fig. 1: Model Stock vs. Model Soup. Model Stock consistently enjoys improved
accuracy on ImageNet (x-axis) and distribution shift benchmarks (y-axis) against indi-
vidual fine-tuned models (gray circles). We plot WiSE-FT [41] curves to each fine-tuned
model, highlighting Model Stock’s better performance on distribution shifts compared
to Model Soup [40]. Note that Model Stock has much smaller computational costs
than Model Soups (24× smaller), i.e., Model Stock requires two fine-tuning procedures,
whereas Model Soups are leveraging 48 various fine-tuned models in this experiment.

about efficiency and practicality in general scenarios where the models need to
be prepared from scratch. Thus, our question is: Is there an efficient way to
achieve an effective merged weight from very few fine-tuned models?

We initially explore the dynamics of fine-tuned weights under the simplest
scenario: varying the random seeds while maintaining the other training setups.
It reveals that the fine-tuned weights with different random seeds reside on a very
thin shell layer-wise during and after training. We then delve into the impact of
a model-soup-like weight averaging approach. Our findings show that the closer
proximity of the averaged weights correlates with improved In-Distribution (ID)
and Out-Of-Distribution (OOD) performance.

Building upon the findings, we propose a novel approach of fine-tuning method
coined Model Stock, analogous to chicken stock in cooking, distinguishing it
from what Model Soup intended. Now, the answer to our question is indeed affir-
mative: Model Stock approximates the merged weight using just a few fine-tuned
models, leveraging the weight space’s geometric properties and a pre-trained
model’s anchoring effect. This strategy offers a more computationally efficient
alternative to the labor-intensive averaging of fine-tuned models, streamlining
the process while enhancing model performance. Fig. 1 illustrates our brief com-
parison of Model Stock vs. Model Soup [40]. We reproduce the Model Soup
experiments1 based on the CLIP ViT-B/32 initialization by fine-tuning 48 mod-
els with various hyper-parameters, which is defined as zero-shot initialization

1 We follow the standard grid hyper-parameter sweep [40], fine-tuning for 10 epochs.
Our results align with those presented in Fig. D.1 (right) of the original paper [40].
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setting. Fig. 1 shows that Model Stock outperforms Model Soups with much
smaller computational costs.

Our comprehensive experiments demonstrate the effectiveness of Model Stock.
We achieve performance comparable to, or even surpassing, that of the more
resource-intensive methods such as Model Soup [40], using only a fraction of
the models. Specifically, our method achieves 87.8% ImageNet top-1 accuracy
(ID) and averaged 74.9% in five distribution shift benchmarks (OOD) on ViT-
L/14 fairly compared with the prior arts using the CLIP pre-trained weight.
We believe that our study not only underscores Model Stock’s practicability
but also opens new directions in the pre-train/fine-tune paradigm for superior
performance across various tasks.

2 Analyzing Fine-tuned Weights

Our study is driven by two fundamental findings related to the performance
and robustness of fine-tuned models. The first one is that model weights are
fine-tuned on different random seeds2 lie on thin shell in weight space layer-
wise. The second posits that closer proximity to the center of this thin shell
is beneficial for improving performance across the ImageNet and distribution
shift benchmarks. The substantiation and implications of these observations are
discussed in the subsequent sections.

2.1 Geometric Properties Between Weights

Angle and norm of weights. We begin by examining the intrinsic properties
of the weights in fine-tuned models. We define the weight vector of the fine-
tuned model at k-th layer as w(k) ∈ Rn(k)

where n(k) is the number of weight
parameters at k-th layer, and the origin 0 as the pre-trained model weight w

(k)
0

at k-th layer. Then the angle θ(k) between two weight w
(k)
1 and w

(k)
2 is defined

by: θ(k) = arccos

(
w

(k)
1 ·w(k)

2

∥w(k)
1 ∥∥w(k)

2 ∥

)
, where the Euclidean l2-norm ∥w(k)∥ of a n(k)

defined as ∥w(k)∥ =

√∑n(k)

i=1 w
(k)
i

2
. Angle and norm will provide a geometric

view of the weights at k-th layer between fine-tuned models.

Observation 1: Angle and norm consistency among fine-tuned weights.
We investigate the weight space of models fine-tuned on ImageNet from a pre-
trained model with various random seeds. Our first observation is that both angle
θ(k) between two different models and norm ∥w(k)∥ of a weight exhibit consistent
values with very low standard deviations, as shown in Fig. 2. This consistency
can be mathematically represented as follows: For all i and j ∈ [1, N ] when the
number of fine-tuned weights, N , is sufficiently large, the following holds:

w
(k)
i ·w(k)

j =

{(
l(k)

)2
if i = j,(

l(k)
)2

cos θ(k) otherwise,
(1)

2 Random seed influences training randomness, such as training data shuffling and
data augmentation parameters.
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Fig. 2: Layer-wise angle and norm of fine-tuned models. We measure the angle
θ(k) (degree) and norm ∥w(k)∥√

n(k)
for 50 distinct weights, fine-tuned under different random

seeds. We separately visualize weight layers (red bars) and bias layers (blue bars), where
bias layers have much smaller angles. We plot the mean angle and norm values with
standard deviation (black error bar). The results show that any two fine-tuned weights
have layer-wise consistent angle and norm with extremely low standard deviation.

where l(k) and θ(k) are constants that describe the magnitude and angle between
weights at k-th layer, respectively. Henceforth, to simplify notation, we will omit
the superscript (k) indicating the layer index.

Interestingly, these consistencies in angle and norm are observed 1) across
diverse setups and 2) both during and after training. Fig. 2 shows this consistency
over 50 fine-tuned CLIP ViT-B/323 [30] models. It illustrates that the layer-wise
norm and angle of these models exhibit almost constant values with extremely
minimal error. While this figure depicts a specific model (i.e., CLIP ViT-B/32),
we establish that such regularity is not confined to a single model or setting but
is consistent across various CLIP fine-tuning scenarios. We conjecture this holds
irrespective of networks (ViT [5], Hybrid-ViT [5], ResNet [9], ConvNext [24]),
optimizers (SGD, AdamW [25]), data augmentations (RRC [35], RandAug [4]),
datasets (CIFAR [17], ImageNet [34]), or initialization of the classifier (zero-
shot, LP-FT [18]). Remarkably, this regularity also holds for fine-tuned weights
at each step during training as well as after training. A comprehensive analysis
supporting these findings is presented in the Appendix A.

Based on the observation, we presume the distribution of the fine-tuned
weights. The center of the fine-tuned weights is defined as µ=limN→∞

1
N

∑N
i=1 wi.

We then deduce the following properties among fine-tuned weights: (i) ∥wi −
µ∥ = constant, indicating a thin shell distribution; (ii) (w0 − µ) ⊥ (wi − µ);
and (iii) (wi − µ) ⊥ (wj − µ) for all i, j ∈ [1, N ]. These properties are depicted
in Fig. 5 for better understanding. The detailed proof is in the Appendix B.

3 https://github.com/openai/CLIP

https://github.com/openai/CLIP
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Table 1: Distance from the center (i.e., ∥w − µ∥) vs. performance. We report
the ImageNet and distribution shift performance with the distance from the center of
weights µ for fine-tuned and averaged models. We observe 1) both models consistently
maintain a nearly constant distance from µ with remarkably small standard deviation;
2) averaging more models approaches µ, boosting ID and OOD performance.

∥w − µ∥ ImageNet Avg. shifts

Fine-tuned 13.133±.004 79.72 46.37
w

(2)
avr 9.192±.003 80.24 47.76

w
(3)
avr 7.439±.025 80.35 48.18

w
(5)
avr 5.633±.014 80.47 48.53

w
(50)
avr ≃ µ ∼0 80.59 48.85

Fig. 3: Test error landscape. We visualize a test error landscape with three weight
points: a pre-trained model (w0), a fine-tuned model (w1), and the averaged weights of
50 fine-tuned models (w50

avr). w50
avr locates near the lowest error basin. A better solution

(wH) with lower error than w1 can be easily found utilizing those three weights (§3).

2.2 Center of Weights and Performance

We proceed to explore the relationship between the proximity to the center of
fine-tuned weights and their performance on ID and OOD datasets. Given that
computing the exact center is infeasible, we approximate it by averaging differ-
ently seeded 50 fine-tuned weights, using it as a pseudo-center (i.e. µ≃w

(50)
avr ).

Observation 2: Distance from the center of weights and performance.
Table 1 offers quantitative observations about the fine-tuned weights and their
performance using CLIP ViT-B/32. The results include distances from the weight
center (µ) of fine-tuned models and their averaged counterparts with their ID
and OOD performances. Going closer to the center by averaging the weights
leads to improving both performances. Interestingly, the standard deviation of
the distances is less than 0.1% of the mean distance, suggesting highly consis-
tent fine-tuned weight distances from the center across different weights. This
suggests that fine-tuned weights occupy a thin shell as discussed in §2.1.

Observation 3: Fine-tuned weights occupy local minima edges in the
test error landscape. We present an additional observation regarding the test
error landscape, which relates to the performance around the center of weights.
Fig. 3 depicts the test error landscape on the ImageNet test dataset within a
two-dimensional plane. This plane includes a pre-trained model’s weight (w0),
a single fine-tuned model (w1), and the pseudo-center (w(50)

avr ). This landscape
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Fig. 4: Weights closer to the center enjoy higher performances. We show
the ImageNet accuracy of weights with their distance from the center (µ), which is
approximated with w

(50)
avr . Averaged weights are closer to the center than individual

weights, and their accuracy increases as the averaging number of models (N) increases.
Gray circles are the weights randomly sampled from the Gaussian distribution centered
at w

(50)
avr . Even the random weights also achieve higher performance as they reach the

center. The results indicate the critical role of proximity to the center on performance.

reveals that a fine-tuned model typically occupies the boundary of test error
regions. On the other hand, centered near pseudo-center (w(50)

avr ), the test error
is the lowest and gets higher as the weights get far from the center. Interestingly,
along the line segment w0w1 (i.e., a WiSE-FT curve [41]), the fine-tuned weight
w1 is neither the point closest to the pseudo-center nor the one with the lowest
test error. We will connect this observation in §3 to find wH , the weight on the
line closest to the center.

Observation 4: Randomly perturbed weights nearing the center also
merit high performance. To further investigate the impact of proximity to
the center on performance, we conduct a toy experiment to measure ImageNet
performance using random weights generated by adding layer-wise noise to the
weight at the center. The standard deviation of the noise for each layer is ad-
justed to align with the distribution of fine-tuned weights. Fig. 4 presents a
scatter plot correlating the distance of model weights from the distribution’s
center with corresponding ImageNet accuracies. Remarkably, randomly sampled
weights demonstrate performance comparable to fine-tuned and averaged mod-
els, highlighting the importance of center proximity.

Finally, the above observations naturally raise a question: Why do fine-tuned
weights through optimization not reach the center, staying constantly close in-
stead? Previous studies [3, 15] tell us that optimization steps might struggle to
guide fine-tuned weights to the center of the weight distribution due to the many
stationary points in the loss surface. Alternatively, averaging independently fine-
tuned models is a unique solution but both laborious and resource-intensive. It
appears that there are no better alternatives for getting closer to the center, as
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Fig. 5: Comprehensive illustration of the geometric dynamics of fine-tuned
weights. This figure illustrates the behavior of fine-tuned weights that lie on a thin
shell, supporting our Gaussian distribution hypothesis. Each sphere represents a thin
shell that fine-tuned models lie on at each training step, with w0 denoting the pre-
trained model. The curved lines trace the fine-tuning trajectory from w0, while the red
vectors indicate that fine-tuned models at each time step are equidistant from w0.

optimization proves ineffective near these flat local minima. Could there be a
faster approach to reaching the center? This question will be addressed in §3.

2.3 Our Hypothesis

The observed geometric patterns in weight distributions closely align with math-
ematical properties of Gaussian distributions, represented as N (µ, Σ). There-
fore, a plausible reason for the particular geometric pattern of fine-tuned weights
could be the influence of Gaussian noise within the weight space. In high-
dimensional spaces, vectors sampled from such distributions tend to have nearly
identical norms, specifically

√
|µ|2 + trace(Σ) and consistent in-between angles,

due to the concentration of measure phenomenon [19]. The likelihood of the
squared norm significantly deviating from this expected value is exponentially
negligible in high-dimensional spaces, like a weight space.

In other words, the vectors sampled from high-dimensional Gaussian distri-
bution lie on a very thin shell with the radius ≈

√
trace(Σ) around the center

µ. Consequently, we hypothesize that fine-tuned weights follow a Gaussian dis-
tribution in a layer-wise manner. While not necessary for our observation, this
hypothesis provides a sufficient condition for understanding the geometric dy-
namics of fine-tuned weights. For example, it aids in the intuitive understanding
of the fact that the distance of w(N)

avr from the weight center is proportional to
1/
√
N , signifying the reduction of variance. Fig. 5 comprehensively illustrates

the observations and our hypothesis discussed in §2.

3 Method

This section introduces our method, Model Stock, a cost-efficient weight merg-
ing method. As discussed in §2.2, getting closer to the center of weights µ in-
duces improved model performance. A straightforward method to approximate
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Fig. 6: Schematic concept of our Model Stock. We present two scenarios with a
small angle (left) and a large angle (right). Given a pre-trained weight (w0) and two
fine-tuned weights (w1, and w2), we visualize a gray triangle representing the span of
three weights. We consider this triangle area our search space spanned by three weights.
We aim to find the best weight point on the triangle nearest the ideal center µ. We find
that the perpendicular foot wH from point µ to the plane is the nearest point, which
can be specified solely using the angle between the fine-tuned models, even without
knowing the exact position of the center µ. We utilize wH as the merged weight of
Model Stock. Intuitively, when the angle θ is large (i.e., two weights are diverse), as in
the right figure, wH will rely more on the pre-trained weight(w0), vice versa.

µ is averaging multiple model weights, which can be computationally expensive.
We propose an efficient alternative method by leveraging the pre-trained model
weights, an aspect previously neglected by existing weight-merging methods. A
pre-trained model usually possesses general knowledge and shows robust and
reliable performance in out-of-distribution (OOD) cases [30]. Therefore, a pre-
trained model can become a robust anchor point. As shown in Fig. 3, we could
readily identify a weight (wH) that is closer to the center—and thus better—by
interpolating with the anchor. Building on this concept, we propose a method
to approximate the center of weights more accurately with only a few fine-tuned
weights. Again, for readability, we omit the layer notation (k), but the subse-
quent method is applied layer-wise.
On two fine-tuned models. We observed in §2 that two fine-tuned models
with different random seeds have almost constant norms and the angle between
them. Based on this, we define a plane connecting the pre-trained model and two
fine-tuned models as shown in Fig. 6 (depicted as a gray triangular area). Any
weight vector on this plane can be expressed as a linear combination of the pre-
trained model and two fine-tuned models. Our goal is to find the weight closest
to the center of fine-tuned weights on this plane, which is the perpendicular foot
(wH) from the center of distribution (µ) to the plane.

Even without knowing the exact position of the center µ, wH can be specified
solely using the angle between the fine-tuned models with the following two
conditions that µ must satisfy. First, as mentioned in §2.1, (w1−µ) ⊥ (w2−µ)
and ∥wi−µ∥ = ∥w2−µ∥ hold, implying that △w1µw2 forms an isosceles right
triangle. In Fig. 6, µ should lie on the dotted hyper-circle. Another condition is
that the condition (w0−µ) ⊥ (w12−µ) must be satisfied, where w12 = w1+w2

2 .
This condition arises from the second property in §2.1, where (w0−µ) ⊥ (wi−µ).
Combining these two conditions, µ is at the point where the line starting from w0
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is tangent to the hyper-circle. We precisely determine the position of µ within a
3D volume slice that encompasses both µ and △w0w1w2. Consequently, we can
find the position of the closest weight wH to the distribution’s center on the plane
using straightforward geometric principles. The position of the perpendicular
foot is determined as follows:

wH =
2 cos θ

1 + cos θ
·w12 +

(
1− 2 cos θ

1 + cos θ

)
·w0. (2)

For more detailed proof, please refer to the Appendix D. Note that the interpola-
tion ratio t = 2 cos θ

1+cos θ is solely determined by the angle θ between two fine-tuned
models. Crucially, unlike previous methods, determining t does not require ex-
tra training [22, 36, 37, 40] or heuristic hyper-parameter settings [6, 40], thereby
simplifying the process and enhancing its accessibility and efficiency.

As the θ decreases, the pre-trained model is less utilized for merging, as
shown in Fig 6 (left). Coupled with the observation in Fig. 2, this indicates that
bias layers rely less on pre-trained models and focus more on fine-tuned models,
whereas weight layers depend more on pre-trained models. This observation ex-
tends the findings of previous works such as BitFit [43] and LP-FT [18]. In the
case of BitFit and LP (i.e., the first step of LP-FT), bias and classifier layers
fully utilize fine-tuning, while other weight layers (attention and MLP) rely on
pre-trained models. We present an additional analysis in the Appendix F.
On N fine-tuned models. We further extend the previous derivation to N
fine-tuned models to move even closer to the weight center. Let us denote
w

(N)
avr as the N -averaged weight,

∑N
i=1 wi/N , and w

(N)
H as the weight in the

span(w0,w1, . . . ,wN ) closest to the distribution’s center. Then, we derive the
position of w(N)

H as:

w
(N)
H =t ·w(N)

avr + (1− t) ·w0, s.t. t =
N cos θ

1 + (N − 1) cos θ
. (3)

Detailed proof is in the Appendix D. Similar to the case of two fine-tuned models,
the interpolation ratio t depends solely on the angle θ between the pre-trained
model and the N fine-tuned models.

Fig. 7: Periodic merging
for Model Stock. Weights
are merged every epoch.

Periodic merging. To move one step forward
with our method, we propose periodic merging,
which is performed between the fine-tuned models
and the pre-trained model during training. As the
geometric properties of weights are also applicable
to weights during training (refer to Appendix A.2
for more details), we fully utilize this phenomenon
here.

We strategically merge weights at the end of every epoch, allowing for the
fine-tuning process to be parallelized with merging. The interpolation ratio for
merging is determined by the angle θ between the pre-trained model and the
fine-tuned models at the current epoch. Fig. 7 visualizes this periodic merging
process. We argue that employing the periodic merging can approximate the
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center of weights more accurately. In §4.3, we empirically show that the periodic
merging yields superior performance and achieves a closer distance to the center.

4 Experiment

We present the key experimental results in this section. We first provide our
experimental setups in §4.1. Then, we present the main results in §4.2, and
ablation studies in §4.3. More detailed experimental setups, analysis, and further
results are in the Appendix G. We will release our codes and weights publicly.

4.1 Experimental Setup

Models. We conduct the experiments on CLIP ViT-B/32, CLIP ViT-B/16,
and CLIP ViT-L/14 models. We set the number of fine-tuning models for Model
Stock as two. We compare Model Stock against various fine-tuning techniques,
including Model Soups [40], LP-FT [18], CAR-FT [27], FTP [37], and FLYP [7].
We use CLIP ViT-B/32 for ablation studies.
Datasets. We fine-tune models on the ImageNet-1K [34] training dataset. We
report the ImageNet-1K [34] top-1 accuracy for evaluating in-distribution (ID)
performance. For distribution shift scenarios, we consider five out-of-distribution
(OOD) benchmarks including ImageNet-V2 [33], ImageNet-R [10], ImageNet-
Sketch [39], ImageNet-A [11], and ObjectNet [1]. Since previous methods, except
Model Soups [40], have not been evaluated on ObjectNet, we omit the ObjectNet
results when comparing against them.
Training setup. We initialize the classifier weights (e.g ., 1000 classes for Im-
ageNet) using the text encoder of CLIP and text prompts following Model
Soup [40]. We use AdamW [25] with batch size 512 and weight decay 0.1 for
all the experiments, including vanilla fine-tuning, Model Soup reproduction, and
Model Stock4. We employ two training setups for comparisons: (1) training 10
epochs with minimal data augmentation, following Model Soup’s zero-shot ini-
tialization setup, and (2) training 16 epochs with strong data augmentation, fol-
lowing one of Model Soup’s LP initialization setup [40], denoting with ⋆. These
setups enable a balanced comparison of Model Stock against zero-shot and LP-
initialized Model Soups. Detailed hyper-parameters are in the Appendix G.

4.2 Main Results

CLIP ViT-B/32. Table 2 shows the results of Model Stock on the pre-trained
CLIP ViT-B/32 model by comparing it with Model Soups. ‘Avg. shifts’ denotes
the average accuracy of the five OOD benchmark scores. Our Model Stock and
Model Stock⋆ show competitive performance with Model Soups. Furthermore,
Model Stock⋆ achieves state-of-the-art performance on ImageNet with 81.19%
top-1 accuracy. As described in Fig. 1, Model Stock with WiSE-FT [41] enjoys a
4 We reduce the batch size to 64 on CLIP ViT-L/14 due to memory limitation.
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Table 2: Comparison against Model Soups [40] on CLIP ViT-B/32. We re-
port the performance and relative fine-tuning costs on the CLIP ViT-B/32 scenario.
α denotes the cost for LP initialization. Model Stock shows comparable performance
with Model Soups with significantly reduced training costs.

Method ImageNet Avg. shifts Cost

Comparing with Model Soups from zero-shot init.
CLIP zero-shot Initialization 63.34 48.51 0
Vanilla FT 78.35 47.03 1
Uniform Model Soup (from zero-shot) 79.76 52.08 48
Greedy Model Soup (from zero-shot) 80.42 50.83 48
Model Stock 79.89 50.99 2

Comparing with Model Soups from LP init.
CLIP LP initialization 75.57 47.21 α
Vanilla FT⋆ 79.72 46.37 1
Uniform Model Soup (from LP init) 79.97 51.45 71+α
Greedy Model Soup (from LP init) 81.03 50.75 71+α
Model Stock⋆ 81.19 48.69 2

Table 3: Model Stock on CLIP ViT-B/16. Model Stock shows competitive per-
formance against previous fine-tuning methods on ImageNet and distribution shifts.

Distribution shifts
Method ImageNet Avg. shifts IN-V2 IN-R IN-A IN-Sketch

Zero-shot 68.3 59.5 62.0 77.7 49.9 48.3
Vanilla FT 82.8 57.7 72.9 66.4 43.7 48.0
Vanilla FT⋆ 83.7 57.4 73.5 67.6 40.0 48.6
LP [18] 79.7 48.1 71.5 52.4 27.8 40.5
LP-FT [18] 81.7 60.5 71.6 72.9 49.1 48.4
CAR-FT [27] 83.2 59.4 73.0 71.3 43.7 49.5
FTP [37] 84.2 49.7 74.6 47.2 26.5 50.2
FLYP [7] 82.6 60.5 73.0 71.4 48.1 49.6

Model Stock 84.1 62.4 74.8 71.8 51.2 51.8
Model Stock⋆ 85.2 60.1 75.3 68.7 45.0 51.3

superior ID-OOD performance curve compared to Model Soup and its WiSE-FT
curves. Note that Model Soups require dozens of fine-tuned models (e.g ., zero-
shot and LP-init Model Soups use 48 and 71 models, respectively), highlighting
the effectiveness of Model Stock along with efficiency utilizing only two models.
We provide further comparison results with WiSE-FT [41] curves on LP-init
Model Soups in the Appendix H.

CLIP ViT-B/16. Table 3 presents a comprehensive comparison of different
fine-tuning methods applied to CLIP ViT-B/16. Previous works [18,36,37] lack
ObjectNet [1] results; therefore, we omit ObjectNet and report the other four
OOD benchmarks. Complete results with ObjectNet and ImageNet-Real [2] are
in the Appendix H.2. The results show Model Stock exhibits exceptional per-
formance on the ImageNet accuracy, e.g ., Model Stock⋆ achieves 85.2% top-1
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Table 5: Impact of the number of
fine-tuning models (N) on Model
Stock. IN denote ImageNet accuracy.

IN Avg. Shifts ∥w − µ∥

FT 79.7 46.7 13.13
N=2 80.1 48.8 10.01
N=3 80.2 48.8 9.05
N=4 80.4 48.9 8.45

Table 6: Impact of merging period
on Model Stock. IN denotes ImageNet
accuracy.

Period IN Avg. Shifts

1000 iters 79.8 48.7
5000 iters 79.9 48.5
1 epoch 80.1 48.8

accuracy on ImageNet, which is a state-of-the-art level. Model Stock also shows
robust performance across diverse distribution shift scenarios.

Table 4: Model Stock on
CLIP ViT-L/14.

IN Avg. shifts

Zero-shot 75.0 63.0
Vanilla FT 85.8 66.8
Vanilla FT⋆ 87.1 68.0
TPGM [36] 87.0 69.4
CAR-FT [27] 87.1 67.8

Model Stock 87.0 71.6
Model Stock⋆ 87.7 73.5

CLIP ViT-L/14. Table 4 shows the results
of Model Stock on the CLIP ViT-L/14 model.
The results show that Model Stock can push
the limit of benchmark scores with large-size
backbone architecture. We remark that Model
Stock⋆ achieves state-of-the-art performance
with 87.7% ImageNet top-1 accuracy, implying
that Model Stock is still effective in a scale-
up scenario. The results consistently demon-
strate the high efficacy and robustness of Model
Stock across diverse scales of models and vari-
ous benchmark scenarios, reaffirming its potential in practical applications.

4.3 Ablation studies and analysis of Model Stock

We conduct ablation studies on CLIP ViT-B/32. We train vanilla fine-tuned
models and Model Stock for 16 and 8 epochs, respectively; thus, the training
cost of Model Stock matches with a single fine-tuning process.

Experiments on the number of fine-tuned model N . Table 5 shows the
effect of the number of fine-tuned models. The results show that Model Stock
obtains enhanced performance and closer distance from the (pseudo-) center
(∥w−µ∥) as the number of merging models increases. Considering the trade-off
between the performance and training cost induced by increased N , our setting
(N=2) shows the best for Model Stock.

Study on the merging period of Model Stock. Table 6 shows the results of
various merging periods, including 1000 and 5000 iterations settings. Note that
1 epoch is ∼2500 iterations in our experiment. Model Stock shows consistent
performance with various periods.

The post-training merging strategy of Model Stock. We study an alter-
native of Model Stock that merges fine-tuned weights only once after each fine-
tuning process is finished, similar to Model Soups [40]. We denote it as Model
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Table 7: Post-training merging strategy of Model Stock. We present ImageNet
accuracy, distribution shifts, and distance from the center with the results of uniform
averaging, a straightforward baseline.

Uniform averaging (wN
avg) Model Stock (post-training)

ImageNet Avg. Shifts ∥w − µ∥ ImageNet Avg. Shifts ∥w − µ∥

N=2 80.2 47.8 9.19 80.3(+0.1) 50.4(+2.6) 7.62(-1.57)
N=3 80.4 48.2 7.44 80.4(+0.0) 50.2(+2.0) 6.49(-0.95)
N=4 80.5 48.5 5.63 80.5(+0.0) 49.8(+1.4) 5.16(-0.47)

Stock (post-training). We utilize the individually fine-tuned weights as we con-
ducted in §2, using the same training settings with different random seeds for
each model. We report the performance and distance from the pseudo-center of
Model Stock (post-training) in Table 7. On the left side of the table, we provide
the performance of its counterpart, a uniform averaging of N models (wN

avg).
The improvements from the uniform averaging to Model Stock (post-training)
are denoted in the table’s parentheses. The results show that Model Stock (post-
training) archives improved distribution shift scores with closer distances toward
the center than its counterpart.

5 Related Work

We discuss related works and highlight how our method differs and contributes
to the existing works.

Model Soups [40] is a straightforward weight averaging method that merges
weights from various fine-tuned models trained with different hyper-parameters.
It demonstrates improved in-distribution (ID) and out-of-distribution (OOD)
performance. While effective, model soups typically require a large number of
fine-tuned models. Our method aims to achieve similar or superior performance
improvements more efficiently, utilizing significantly fewer fine-tuning costs. We
provide further discussion about Model Soups with our new interpretation in
Appendix E.

Robust Fine-tuning. When fine-tuning generalist models like CLIP, we often
observe the fine-tuned models lose the generalization ability of the original CLIP
model, with decreased OOD performance. To address this issue, several robust
fine-tuning approaches have been proposed. LP-FT [18] attempts to preserve pre-
trained weights by initially training only a linear probing layer. WiSE-FT [41]
improves OOD performance through linear interpolation between fine-tuned and
pre-trained weights. While our method shares similarities with WiSE-FT in using
pre-trained weights, our method determines interpolation ratios layer-wise based
on geometric properties. Focusing on OOD performance, methods suggesting
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improved training objectives [7, 27–29, 36, 37] has been proposed. Our approach
differs from these methods as we do not propose a new fine-tuning loss. Instead,
we perform two fine-tunings and achieve robust performance by merging them.

Weight Center and Flat minima Recent machine learning research has ex-
tensively explored the significance of finding flat minima for improved gener-
alization [3, 15, 21, 26]. Keskar et al . [16] and Hochreiter & Schmidhuber [12]
demonstrated that sharp optima by large batch SGD have steep, harmful direc-
tions, while broader optima enhance generalization. Stochastic Weight Averaging
(SWA) [15] targets the center of flat minima, enhancing robustness against shifts
in the loss landscape between training and test datasets. SWAG [26] builds on
SWA by incorporating Bayesian model averaging with a Gaussian posterior to
further boost performance. SWAD [3] found that the generalization gap between
flat and sharp minima is more pronounced in OOD scenarios than in ID ones.
Our method theoretically extends these approaches by efficiently identifying the
center of flat minima with novel geometric properties, leading to significant im-
provements in both ID and OOD performances.

Model Weight Merging. Recent research has explored merging models fine-
tuned on various tasks. Methods such as Task Arithmetic [14] and TIES [42]
have been proposed. They are also based on the difference between fine-tuned
and pre-trained weights (often referred to as the “task vector”). However, our
method distinguishes itself through geometric analysis for weight merging. In the
domain of Large Language Models (LLMs), merging techniques like WARM [31]
and WARP [32] have emerged. Our method has the potential for extension to
these areas, offering new avenues for future research.

6 Conclusion

Our study illuminated the fine-tuning process in machine learning, revealing
that fine-tuned models’ weights generally exhibit the properties of a Gaussian
distribution. The proximity of these models to the center of weights was crucial
for improved performance in target domains like ImageNet and under diverse
distribution shifts. Utilizing a pre-trained model as a robust anchor point, we
efficiently minimized the variance with fewer fine-tuned models, eliminating the
need for additional training to find the optimal interpolation ratio.

Additionally, our findings suggested further knowledge and applicability to
the models near flat minima and will offer new insights on model weight merging
methods. As the pretraining-finetuning paradigm gains more prominence, our
insights will provide a foundation for better understanding and optimizing the
fine-tuning process in both academia and industry.
Limitation. Due to resource limitations, we could not conduct larger-scale mod-
els such as ViT-G. Exploring this will be part of our future work.
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Appendix

In this Appendix, we provide in-depth analysis and additional insights to com-
plement the main text of our study on Model Stock, our novel approach to
fine-tuning and weight merging. The contents are summarized as follows:

– We examine the angle norm consistency of fine-tuned weights across various
settings in §A, extending the observations discussed in §2.1.

– We provide detailed proofs of geometric properties of fine-tuned weights in
§B.

– We study the importance of reducing variance for performance in out-of-
distribution scenarios in §C, showcasing the test error landscape across var-
ious datasets and elaborating on the explanations in §2.2.

– We provide detailed proofs in §D for the optimal interpolation ratio in our
method §3.

– We discuss prior studies through the lens of our findings in §E.
– We provide an additional analysis of the interpolation ratio in §F.
– We present experimental settings of §4 in §G.
– We present additional experiments of Model Stock in §H

Each section aims to offer a comprehensive understanding of our method’s un-
derlying principles and its broad applicability in machine learning.

A Angle and Norm Consistency

We argue that, as discussed in §2.1, angles and norms of fine-tuned weights would
remain consistent across fine-tuned models, independent of various factors. These
factors include architecture type (ViTs [5], ResNet [9], ConvNeXt [24]), optimiz-
ers (SGD, AdamW [25]), augmentations (RRC [35], RandAug [4]), datasets (CI-
FAR [17], ImageNet [34]), or the initialization of the classifier (zero-shot, LP as
in LP-FT [18]). We depict the layer-wise angle and norm of 5 fine-tuned weights
for each category based on different random seeds. We give detailed illustrations
for each setting at the end of the Appendix to enhance readability (refer to
Fig. H–O). Across all these settings, the angle and norm of weights exhibit a
surprising level of consistency.

A.1 Analysis on layer-wise tendency

The layer-wise angle and norm across various settings are shown in Fig. H–
L. We visualize with every weight of attentions/convolutions (Attention/Conv),
multi-layer perceptrons (MLP), normalizations (LayerNorm and BatchNorm),
a classifier (Classifier), individual bias (Bias), and the remaining layers (i.e.,
the patchification layer, positional embedding, class embedding, and projection
layer). We further display All in each figure, which denotes the concatenation of
the weights of entire layers.
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The layer-wise analysis reveals an interesting trend: Bias and classifier layers
demonstrate smaller angles than attention and MLP layers. In other words, bias
and classifier layers exhibit lower randomness and more reliable updates than
attention and MLP layers. It is important to note that as the angle decreases,
the pre-trained model is less utilized for merging (refer to Eq. (2). This indicates
that bias and classifier layers focus more on fine-tuned models and rely less on
the pre-trained model, whereas attention and MLP layers depend less on the fine-
tuned model (i.e., tbias, tclf > tattn, tmlp). This observation extends the findings of
previous works such as BitFit [43] and LP-FT [18]. In the case of BitFit and LP
(i.e., the first step of LP-FT), bias and classifier layers fully utilize fine-tuning,
while other layers (attention and MLP) rely on pre-trained models.

These traits could offer new insights into parameter-efficient transfer learn-
ing (PETL) [8, 13, 23, 43] and layer-wise fine-tuning [18, 20, 36, 37]. Maintaining
weights with high randomness (higher angles) while updating on biases and clas-
sifier weights with lower randomness and fewer parameters would be an efficient
fine-tuning strategy. PETL has been exploring this direction but has not yet
provided solid reasons why certain layers are more effective than others. Our
analysis suggests that one reason could be the lower randomness (or variance)
of these layers, as indicated by the angle trend per layer.

A.2 Maintaining consistency during training

We further argue that the consistency we observed is maintained while training
progresses, as illustrated by multiple thin shells in Fig. 5. To demonstrate that
the angle and norm of fine-tuned models remain consistent during the entire
training process, we plot their relationship across weights for every epoch in
Fig. M. Please note that the angle is consistent across differently seeded models
at the same timestamp (i.e., w1|t=t1 and w2|t=t1), not across models at different
timestamps (i.e., w1|t=t1 and w1|t=t2). The observed trend is as follows: as
training progresses, the angle between weights steadily decreases. This analysis
uses the CLIP ViT-B/32 model fine-tuned on ImageNet-1K with five random
seeds.

A.3 Filter-wise analysis of weights

Li et al . [21] showed that when evaluating the robustness of a neural network by
adding random noise to certain weights, performance analysis based on adding
filter-wise noise (i.e., adding noise for each row in all weight matrices) aligns
more closely with the generalization performance than adding layer-wise noise
does. Inspired by this observation, we investigate the possibility that the weight
distribution may follow a filter-wise Gaussian distribution and adapt this concept
to our method (see the performance analysis in §H.5). Fig. N illustrates the
angle distribution filter-wise. The angle exhibits much larger standard deviations
than the layer-wise distribution. This could be attributed to the reduction in
dimensionality. As the number of dimensions decreases, it becomes challenging
to approximate the norm as a constant value.
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A.4 Analysis on non-CLIP models

To verify if this key observation also applies to non-CLIP models, we analyze
the geometric patterns of fine-tuned weights trained using the DeiT [38] method
(i.e., pre-trained on ImageNet-21K). Fig. O displays the angle and norm of 10
DeiT-base models first pre-trained on ImageNet-21K [34] and then fine-tuned on
ImageNet-1K. We find that weights pre-trained with ImageNet-21K also exhibit
consistent angle and norm, indicating that our observation may be valid beyond
CLIP fine-tuning scenarios as well.

B Detailed Proof for Geometric Properties of Fine-tuned
Weights

For all indices i, j within the set [1, N ], where N denotes the sufficiently large
number of fine-tuned weights, we derive one lemma and three propositions based
on the foundational observation described in Eq. (1):
Lemma: wi · µ = µ · µ = l2 cos θ.
Proof:

wi · µ = lim
N→∞

1

N
wi ·

N∑
k=1

wk = lim
N→∞

1

N
(l2 + (N − 1) ∗ l2 cos θ)

= l2 cos θ.

Similarly,

µ · µ = lim
N→∞

1

N2

N∑
k=1

wk ·
N∑
l=1

wl = lim
N→∞

1

N2
(N ∗ l2 +N(N − 1) ∗ l2 cos θ)

= l2 cos θ. ⊓⊔

Proposition 1: ∥wi − µ∥ = constant.
Proof:

∥wi − µ∥2 = (wi − µ) · (wi − µ)

= wi ·wi − 2wi · µ+ µ · µ
= l2 − 2l2 cos θ + l2 cos θ (by Lemma)

= l2(1− cos θ) (constant) ⊓⊔

Proposition 2: (w0 − µ) ⊥ (wi − µ).
Proof:

(w0 − µ) · (wi − µ) = −µ · (wi − µ)

= 0 (by Lemma) ⊓⊔

Proposition 3: (wi − µ) ⊥ (wj − µ).
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Fig.A: Test error landscape on OOD datasets. We depict the test error landscape
on ImageNet-V2, -Sketch, ObjectNet, ImageNet-R, and -A (from left to right, from top
to bottom, respectively) on the plane containing pre-trained model (w0), fine-tuned
model (w1), and the pseudo-center of fine-tuned weights (w(50)

avr ). The local optima for

the OOD datasets always lie on the line segment w0w
(50)
avr .

Proof:

(wi − µ) · (wj − µ) = wi ·wj −wi · µ−wj · µ+ µ · µ
= 0 (by Eq. (1) & Lemma) ⊓⊔

C Importance of Reducing Weight Variance on
Performance under Distribution Shifts

In demonstrating the significance of variance reduction for robustness in out-of-
distribution (OOD) scenarios, we analyze the test error landscape as in §2.2. As
shown in Fig. A, we examine the error landscape across various OOD datasets, in-
cluding ImageNet-V2, ImageNet-Sketch, ObjectNet, ImageNet-R, and ImageNet-
A (from top to bottom). This landscape is plotted on a plane defined by the
weights of a pre-trained model (w0), a fine-tuned model (w1), and the center
of the fine-tuned weights, which is approximated by averaging 50 fine-tuned
weights (w(50)

avr ). A notable pattern emerges where the local optima for these
datasets consistently align with the line segment connecting w0 and w

(50)
avr .

Though the exact location of local minima differs depending on the dataset
type, it has a common point that the minima are aligned on the line between the
weight center and pre-trained model rather than the line between the fine-tuned
weight and pre-trained model. Consequently, not only does the averaged weight
exhibit higher performance on distribution shifts compared to the fine-tuned
model, but the WiSE-FT [41] curves corresponding to the averaged weights also
demonstrate better ID/OOD trade-off than the WiSE-FT curve of the fine-tuned
model, as illustrated in Fig. B. This indicates the importance of getting closer
to the weight center, even for OOD datasets.
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Fig. B: ID vs. OOD accuracy along WiSE-FT [41] curves for averaged mod-
els. As the number of weights used for averaging increases, the corresponding WiSE-FT
curves demonstrate improvements in the ID-OOD trade-off.

Another interesting point is that depending on the traits of datasets, the
position of local minima differs. ImageNet-V2 has a similar dataset distribution
to ImageNet since it shares the same data collection and categorization policy,
and its local optima lies close to that of ImageNet. On the other hand, on
the datasets with harsh variations (e.g ., ImageNet-A), the local minima are
positioned much closer to the pre-trained model than the original ImageNet or
ImageNet-V2. This loss landscape gives an intuitive insight into the similarity
between OOD datasets and ImageNet.

In conclusion, there is no universal interpolation ratio optimal for every dis-
tribution shift. However, all the local minima lie on the line between the weight
center and the pre-trained model. This implies the importance of proximity to
the weight center in achieving a better WiSE-FT line.

D Detailed Proof of Model Stock

Here, we present detailed proof of Model Stock introduced in §3. We first show
the case with two fine-tuned models and extend our proof toward N fune-tuned
models.

On two fine-tuned models. We will prove step-by-step how the optimal interpo-
lation ratio t in Eq. (2) in the main paper is derived. Using the same notation
as in §3, we denote the magnitude and the angle between the fine-tuned weights
as l and θ, respectively. Starting from the fact that △µw1w2 is a right isosceles
triangle, we can derive the following relations from Fig. C:
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Fig. C: Model Stock with two fine-tuned models. We reference the illustration
in Fig. 6 to more understandably substantiate merging two fine-tuned models.

w12w1 = w12w2 = w12µ

=

√
1− cos θ

2
· l (from △w0w1w2 and △µw1w2) (4)

⇒ w12w0 =
√

w1w0
2 −w12w1

2

=

√
12 − 1− cos θ

2
· l

=

√
1 + cos θ

2
· l (from △w0w1w12 and Eq. (4)) (5)

⇒ w0µ =

√
w12w0

2 −w12µ
2

=

√
1 + cos θ

2
− 1− cos θ

2
· l

=
√
cos θ · l (from △w0µw12, Eq. (4) and Eq. (5)) (6)

⇒ t :=
wHw0

w12w0
=

wHw0

w0µ
· w0µ

w12w0

=

(
w0µ

w12w0

)2

(from △w0µw12 ∼ △w0wHµ)

=
2 cos θ

1 + cos θ
(from Eq. (5) and Eq. (6)) (7)

⊓⊔
Interestingly, wH is located at an orthocenter of the triangle △w0w1w2 with

the given optimal ratio t.
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(a) Model Stock with N fine-tuned models.
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Fig.D: Model Stock with N fine-tuned models and Interpolation Ratio Vari-
ation. (a) We visualize a special case of N = 3 (tetrahedron) for better understand-
ing. (b) The trend towards t = 1 with increasing N illustrates that w

(N)
H on the

N -dimensional simplex approaches w(N)
avr , reflecting a growing dependence on the num-

ber of fine-tuned models.

On N fine-tuned models. Similarly, we can derive a more generalized interpo-
lation ratio for N ≥ 2. Our goal is to find the weight w

(N)
avr that is on the

hyper-plane spanned by w0,w1, . . . ,wN and closest to the weight center µ, as
described in Fig. Da. Again, for simplicity, we treat w0 as the origin O.

Based on the observation, we presume that the following two conditions hold:

{
w

(N)
H = t ·w(N)

avr

(w
(N)
avr −w

(N)
H ) · (µ−w

(N)
H ) = 0.

(8)

The first condition comes from the symmetry of an N -simplex structure, and the
second condition holds since the orthogonal projection is the minimal distance
from µ. Then, we can derive t as follows:

By substituting the first condition into the second condition from Eq. (8),

(w(N)
avr −w

(N)
H ) · (µ−w

(N)
H ) = 0

⇒ w(N)
avr · µ− t · ∥w(N)

avr ∥2 = 0

⇒ t =
µ ·w(N)

avr

∥w(N)
avr ∥2

. (9)
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Accuracy  
gain > 0 Accuracy  

gain ≃ 0

Fig. E: Ensembling impact disappears when interpolating between two av-
eraged weights. We plot the ImageNet performance of interpolated weights between
two selected fine-tuned models in Model Soup [40] (left) and between their correspond-
ing weight centers (right).

Note that the norm of the N -averaged fine-tuned weights can be derived as
follows:

∥w(N)
avr ∥2 =

1

N2
(w1 + . . .+wN ) · (w1 + . . .+wN )

=
1

N2
(l2 + l2 cos θ · (N − 1)) ·N

=
l2

N
(1 + cos θ · (N − 1)), (10)

while the term µ ·w(N)
avr can be simplified as

µ ·w(N)
avr =

1

N

N∑
i=1

(µ ·wi) = l2 cos θ (from Lemma). (11)

By substituting Eq. (10) and Eq. (11) into Eq. (9), we can finally derive the
optimal interpolation ratio t as follows:

t =
N cos θ

1 + (N − 1) cos θ
⊓⊔ (12)

Fig. Db displays how the optimal interpolation ratio t varies as a function of
θ with different numbers of fine-tuned models. As N increases, t trends towards
1, indicating that w

(N)
H on the N -dimensional simplex gets closer to w

(N)
avr . This

shows increasing dependence on fine-tuned models as their number grows.

E Discussion — Rethinking Pivotal Prior Studies

In this section, we extend our findings to reinterpret the underlying mechanics in
prior studies, WiSE-FT [41] and Model Soups [40], through a consistent rationale
to illuminate their effectiveness.
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WiSE-FT [41] is a state-of-the-art robust fine-tuning method for CLIP-based
models. It demonstrates that linearly combining weights of the pre-trained and
fine-tuned models achieves significant accuracy gain on distribution shifts. We
argue that the WiSE-FT model’s superiority over a fine-tuned model can be
interpreted by its weights being closer to the center of the corresponding weight
distribution. Fig. 3 already showed fine-tuned models typically lie on the periph-
ery of flat minima. Given that the angle ∠w0w

(50)
avr w1 is nearly a right angle,

along the line w0w1, multiple weight points are closer to the center than a single
fine-tuned model, thereby enhancing performance. Note that wH is the closest
to the center among the line w0w1. More discussions on performance boosts
observed in distribution shifts are provided in the Appendix C.

Model Soup [40] merges various fine-tuned models’ weights trained from varied
hyper-parameters. It has been credited with delivering enhanced performance
across ImageNet and distribution shifts. Here, we interpret the performance
improvements of Model Soup as the result of the proximity to the center of
weight distribution. Consider two weight vectors, wA and wB , fine-tuned with
different hyper-parameters and following Gaussian distribution N (µA, ΣA) and
N (µB, ΣB) respectively. Then, the interpolated weight vector wAB = t ·wA +
(1 − t) · wB also follows a Gaussian distribution N (µAB, ΣAB). The expected
squared distance from the interpolated weight vector to its mean µAB is min-
imized to trace(ΣA)trace(ΣB)

trace(ΣA)+trace(ΣB) when t is chosen to trace(ΣB)
trace(ΣA)+trace(ΣB) , indicating

the reduction of variance through weight interpolation (i.e., the distance be-
tween wAB and µAB might be closer than each weight’s distance). For example,
if trace(ΣB) is equal to trace(ΣA), this minimum squared distance is exactly
half of the sum of the individual traces when t = 0.5. This insight suggests that
the performance gains realized by Model Soup could be due to reduced variance
resulting from merging numerous weights.

We set up a toy experiment to evaluate the effect of variance reduction in
the Model Soup scenario by comparing the interpolation of fine-tuned weights
with the interpolation of their corresponding weight centers, when N = 2. In the
former case, variance reduction exists along with the effect of merging diverse
hyper-parameters, while in the latter case, performance gain would only come
from hyper-parameter diversity. If the diversity of hyper-parameters is a major
factor, the performance gain from interpolation of central weights should remain
the same. To test this, we assessed the ImageNet performance of interpolated
weights between pairs of fine-tuned models within Greedy Model Soup5 [40] and
compared it to interpolations between their central weights, calculated as the
average of 20 differently seeded models. Fig. E shows that, unlike interpolations
between individual models, using the centers does not significantly improve per-
formance. This suggests that proximity to the center of the weight distribution
may play a more critical role than hyper-parameter diversity in weight ensemble
methods in this case.
5 We opt for Greedy Model Soup to show that even the interpolation of models from

the best merging combination does not benefit from the impact of weight diversity.
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Fig. F: Trend of interpolation ratio t during Model Stock training.

It is also worth noting that µAB always surpasses the performance of wAB

for the same interpolation ratio t, indicating that the importance of proximity
to the center remains consistent for interpolated weights. With extensive future
research, this understanding could provide valuable insights for developing more
generalizable and effective weight-merging techniques.

F Analysis of the interpolation ratio t

We analyze the interpolation ratio t = 2 cos θ
1+cos θ in a layer-wise manner. During

a Model Stock experiment on CLIP ViT-B/32 with 16 epoch training, we log
the layer-wise merge ratios at every merging period. Figure F visualizes the
averaged interpolation ratio during Model Stock training. We plot two trends
of the interpolation ratio for the layer depth and training step. Our overall
observation indicates the bias layers have high merge ratios t (≃ 1) with small
angles θ (≃ 0), implying that the bias layers do not need to enjoy the pre-trained
model, similar to our discussion in §2 and §3. Focusing on the weight layers,
Figure Fa shows a U-shape tendency as the layer depth increases, implying the
weights of intermediate layers can be more diverse (i.e., larger angle θ) than those
of early and later layers. Our intuition here is that since the early and later layers
are directly connected to input data and output labels, respectively, they may
not demand the advantage of the pre-trained weight. Figure Fb presents that the
models at the early training stage are more diverse and they enjoy the pre-trained
weights more than those of the later training stage. As the model approaches
convergence, the diversity of fine-tuning models decreases (i.e., smaller angle θ).

G Experimental setup

Here, we present detailed setups for the experiments in §4. We utilize AdamW
optimizer [25] with a weight decay of 0.1. We employ two training setups for
Model Stock. The first is training Model Stock with a learning rate of 3× 10−5

in 10 epochs with minimal data augmentation. The minimal data augmentation
utilizes random resize crop augmentation with a minimum crop ratio of 0.9,
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Fig.G: Results on LP initialization. We plot in-distribution ImageNet accuracy
(x-axis) and distribution shift results (y-axis) with individual fine-tuned models (gray
circles) and Model Soups [40]. Note that Model Stock has much smaller (35× smaller)
computational costs than Model Soups, leveraging 71 various fine-tuned models as in
the original paper.

mixup [44] augmentation with β=0.5, following Model Soup’s “standard grid
search” setting. The other is training Model Stock with a learning rate of 2×10−5

in 16 epochs with strong data augmentation. The strong data augmentation
utilizes random resize crop augmentation with a minimum crop ratio of 0.08 and
random augmentation [4] (N = 2, M = 10) following Model Soup’s “random
search” setting. When experimenting with the ViT-B/16 and ViT-L/14 models,
we adjusted the learning rate and batch size to accommodate the GPU memory
constraints.

H Additional Experiments

We present additional experimental studies to verify the effectiveness and appli-
cability of Model Stock.

H.1 Experiments with LP initialization

We conduct Model Stock with LP initialization and compare it with Model Soups
that are initialized from LP. The results are in Fig. G. In this experiment, we use
the 16-epoch training setup with strong data augmentation for training Model
Stock. As shown in Fig. G, Model Stock outperforms the individual fine-tuned
models6 (gray dots) on ImageNet accuracy. Model Stock also demonstrates com-
petitive performance against Model Soups considering WiSE-FT curves. Note
that Model Stock is much more efficient (35×) than Model Soups, which utilize
71 models in this experiment.
6 All the individual model checkpoints are from the official Model Soup repository.
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Table A: Complete results of Table 3 with ObjectNet [1] and ImageNet-ReaL [2].

Method In-distribution Distribution shifts

ImageNet IN-ReaL IN-V2 IN-R IN-A IN-Sketch ObjectNet

Zero-shot 68.3 75.1 62.0 77.7 49.9 48.3 54.2
Vanilla FT 82.8 87.8 72.9 66.4 43.7 48.0 51.8
Vanilla FT∗ 83.7 87.8 73.5 67.6 40.0 48.6 50.1
LP [18] 79.7 - 71.5 52.4 27.8 40.5 -
LP-FT [18] 81.7 - 71.6 72.9 49.1 48.4 -
CAR-FT [27] 83.2 - 73.0 71.3 43.7 49.5 -
FTP [37] 84.2 - 74.6 47.2 26.5 50.2 -
FLYP [7] 82.6 - 73.0 71.4 48.1 49.6 58.7
Lipsum-FT [28] 83.3 - 73.6 75.9 49.9 51.4 54.4
CaRot [29] 83.1 - 74.1 77.7 51.6 52.7 56.6
Model Stock 84.1 88.8 74.8 71.8 51.2 51.8 55.0
Model Stock⋆ 85.2 89.1 75.3 68.7 45.0 51.3 52.3

Table B: Comparison against Model Soups [40] on CLIP ViT-B/16. Model
Stock shows comparable performance with Model Soups.

Method ImageNet Avg. shifts

CLIP zero-shot Init. 68.3 58.4
Vanilla FT 82.8 56.6
Vanilla FT⋆ 83.7 55.9
Uniform Model Soup 84.4 62.7
Greedy Model Soup 84.3 60.4

Model Stock 84.1 61.0
Model Stock⋆ 85.2 58.5

H.2 Complete comparison results on CLIP ViT-B/16

In the main paper, we omit the results of ObjectNet [1] on CLIP ViT-B/16
experiments since the comparison methods such as LP-FT [18], FTP [37] have
not evaluated on ObjectNet benchmark. We here show the results with Object-
Net [1] and ImageNet-ReaL [2] of CLIP ViT-B/16 in Table A. We addition-
ally compare Model Stock with recent fine-tuning methods including FLYP [7],
Lipsum-FT [28], and CaRot [29] Model Stock consistently demonstrates its ef-
fectiveness with ObjectNet and ImageNet-ReaL as well.

H.3 Model Stock vs. Model Soups on CLIP ViT-B/16

Table B shows the performance of Model Stock on the pretrained CLIP ViT-B/16
model. Since the original Model Soups paper [40] only provides CLIP ViT-B/32
models, we replicate Model Soups experiments on CLIP ViT-B/16. We fine-
tuned 48 models from CLIP ViT-B/16 initialization following the standard grid
hyper-parameter sweep (i.e., zero-shot initialization setting). Model Stock shows
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Table C: Model Stock with different hyper-parameters on CLIP ViT-B/32.

Method ImageNet Avg. shifts

Model Stock 79.89 50.99
Model Stock w/ different hyper-parameters 79.75±0.45 50.40±0.84

Table D: Performance comparison of merging units in Model Stock. This
table presents the overall performance of Model Stock using different merging units:
entire weight merging, entire weight merging based on transformer block angle, layer-
wise merging, and filter-wise merging. It highlights the effectiveness of each strategy
in approaching the weight center and their impact on the model’s performance.

Merging Unit Target Avg.
ShiftsIN IN-ReaL

Entire weights 79.69 85.39 46.40
Entire weights (rep. blocks only) 79.64 85.38 48.28
Layer-wise (ours) 80.12 85.65 48.84
Filter-wise 80.10 85.67 48.72

comparable performance against Model soups. Note that Model Soups requires
24× more training cost than Model Stock.

H.4 Model Stock with different hyper-parameters

To verify the validity of Model Stock beyond the setup of the main paper (i.e.,
different random seeds with the same hyper-parameters), we conduct Model
Stock with different hyper-parameters. In detail, when we fine-tune two models
for Model Stock, we choose different hyper-parameter for each model (e.g ., learn-
ing rate, data augmentation.). To ensure the basic assumption of Model Stock,
we use the same batch size and training epochs. C shows the experimental re-
sults on CLIP ViT-B/32. We repeat 5 runs and report accuracy with standard
deviation. Model Stock with different hyper-parameters shows comparable per-
formance to the original one.

H.5 Ablation study on merging unit

We investigate the efficacy of different merging units within our method, Model
Stock. Our default approach employs layer-wise merging, but alternatives include
merging based on the angle between 1) entire weights, 2) weights of the entire
repetitive transformer blocks following [40], or 3) using a filter-wise approach
as discussed in §A.3. The results of these ablations are summarized in Table D,
where we assess the overall performance based on the chosen merging unit.

Our analysis reveals that the accuracy of noise distribution estimation is
critical in approaching the weight center. When assuming weight noise across the
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entire model, our method does not approximate the weight center as effectively
as it does with layer-wise merging, leading to suboptimal overall performance.
Similarly, the merging performance based on the angle of transformer blocks was
insufficient. Conversely, while filter-wise noise demonstrates a larger standard
deviation in angle, as depicted in Fig. N, this increased variance results in a
more significant error in Gaussian distribution approximation. Consequently,
the overall performance under filter-wise merging is slightly inferior to layer-
wise one.

These findings underscore the importance of accurately modeling noise distri-
bution in enhancing the performance of Model Stock. As our understanding and
ability to model this noise distribution improve, we anticipate further increases
in the efficacy and robustness of our approach.
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(a) CLIP ViT-L/14
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(b) CLIP ResNet50
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(c) OpenCLIP ConvNeXt

Fig.H: Layer-wise angle and norm across different model architectures. The
angle and norm for CLIP ViT-L/14, CLIP ResNet50, and OpenCLIP ConvNeXt are
displayed from top to bottom. These metrics demonstrate consistency regardless of the
model type from left (first layer) to right (last layer). It is important to note that we
also depict the error bars for each layer in all figures, but they are not visible in most
layers due to the small standard deviation.
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(a) SGD optimizer
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(b) SGD optimizer with momentum

Fig. I: Layer-wise angle and norm across different optimizers. Displayed from
top to bottom are the angle and norm for models trained with SGD and SGD with
momentum, respectively. These metrics demonstrate consistency regardless of the op-
timization strategy from left (first layer) to right (last layer).
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(a) Vanilla model (10 epochs + no augmentation)
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(b) + longer epochs (16 epochs)
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(c) + RRC

Fig. J: Layer-wise angle and norm across different augmentations. Displayed
from top to bottom are the angle and norm for the vanilla model (10 epochs + no
augmentation), +longer epochs (16 epochs), and +RRC. Each augmentation is applied
incrementally. These metrics demonstrate consistency regardless of the augmentations
from left (first layer) to right (last layer).



Model Stock 35

0

10

20

30

40

50

60

70

80

90

A
ng

le
 (d

eg
re

e)
Others
Attention
MLP
LayerNorm
Classifier
Bias
All

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

N
or

m
 / 

sq
rt 

(#
. o

f e
le

m
en

ts
) Others

Attention
MLP
LayerNorm
Classifier
Bias
All

Fig.K: Layer-wise angle and norm across different datasets. The angle and
norm for models trained on different datasets, including CIFAR [17] are displayed from
top to bottom. These metrics demonstrate consistency regardless of the dataset type
from left (first layer) to right (last layer).
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Fig. L: Layer-wise angle and norm across different classifier initializations.
The angle and norm for models trained with differently initialized networks following
the LP-FT [18] method are displayed from top to bottom. These metrics demonstrate
consistency regardless of the initialization method from left (first layer) to right (last
layer).

Fig.M: Layer-wise angle during training. Displayed are the overlapped angles
across models trained with different random seeds at each timestamp. Even during
training, the angle remains highly consistent, decreasing as training progresses.
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(a) Filter-wise angle between attention weights in the first transformer block of ViT-B/32

(b) Filter-wise angle between MLP weights in the first transformer block of ViT-B/32

(c) Filter-wise angle between attention weights in the second transformer block of ViT-B/32

Fig.N: Filter-wise angle for attention and MLP layers in ViT-B/32. We
display filter-wise angles for each layer. Each bar represents each row (i.e., filter) in
the given layer. Interestingly, the angles between the filters of the fine-tuned weights
exhibit similar values, while the standard deviation between each filter is notably larger
than that of the angle between each layer. Due to the large number of layers, only
representative layers are selected for display.
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Fig.O: Layer-wise angle and norm for DeiT. The angle and norm for DeiT-
base models are displayed, each trained with different random seeds. These models are
initially pre-trained on ImageNet-21K [34] and then fine-tuned on ImageNet-1K. The
consistency observed in the metrics is maintained even in the DeiT training setting.
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