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Abstract

Understanding document images (e.g.,
invoices) has been an important research
topic and has many applications in document
processing automation. Through the latest
advances in deep learning-based Optical
Character Recognition (OCR), current Visual
Document Understanding (VDU) systems
have come to be designed based on OCR.
Although such OCR-based approach promise
reasonable performance, they suffer from
critical problems induced by the OCR, e.g.,
(1) expensive computational costs and (2)
performance degradation due to the OCR
error propagation. In this paper, we propose a
novel VDU model that is end-fo-end trainable
without underpinning OCR framework. To
this end, we propose a new task and a synthetic
document image generator to pre-train the
model to mitigate the dependencies on large-
scale real document images. Our approach
achieves state-of-the-art performance on
various document understanding tasks in
public benchmark datasets and private
industrial service datasets. Through extensive
experiments and analysis, we demonstrate
the effectiveness of the proposed model
especially with consideration for a real-world
application.

1 Introduction

Semi-structured documents, such as invoices,
receipts and business cards, are commonly handled
in modern working environments. Some of them
exist as digital-born electronic files, while some
are in a form of scanned images or even
photographs. Visual Document Understanding
(VDU) is a task that aims to understand document
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Figure 1: The performance comparison of conventional
visual document understanding architectures and the
proposed method (Donut). The lower the metric score
is, the better performance it is. Note that Donut does
not depend on OCR but operates in an end-to-end
manner.

images despite its diverse formats, layouts and
contents. VDU is the important step to be
preceded for automated document processing. Its
various following applications include document
classification (Kang et al., 2014; Afzal et al., 2015),
parsing (Hwang et al., 2019; Majumder et al.,
2020a), and visual question answering (Mathew
et al., 2021; Tito et al., 2021).

Through the remarkable advances in deep
learning based Optical Character Recognition
(OCR) (Baek et al., 2019b,a), most existing
VDU systems share a similar architecture that
depends on a separated OCR module to extract
text information from target document images. The
systems are designed to consider OCR-extracted
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Figure 2: The schema of the conventional visual document parsing pipeline. (a) The target problem is to extract the
structured information from a given semi-structured document image. In a traditional pipeline, (b) text detection
is conducted to obtain text box locations and (c) each text box is passed to the text recognizer to comprehend
characters in the box. (d) Finally, the recognized texts and their locations are passed to the following module to be
processed for the desired structured form of the information.

text information as input and perform their own
objectives with the OCR-extracted texts. (Katti
et al., 2018; Hwang et al., 2019, 2020, 2021a; Sage
et al., 2020; Majumder et al., 2020a; Xu et al.,
2019, 2021). For example, (Hwang et al., 2019),
a currently-deployed document parsing system
for business card and receipt images, consists of
three separate modules for text detection, text
recognition, and parsing (See Figure 2).

However, in practice, this kind of approach has
several problems. First, OCR is expensive and
is not always available. Training an own OCR
model requires extensive supervision and large-
scale datasets (Baek et al., 2019b,a). Moreover,
most recent state-of-the-art models require GPUs,
which is expensive and increase maintenance cost.
To reduce the cost, using a commercial OCR engine
can be another option, but it is not always available
and the performance of the engine may be poor on
the target domain. Second, OCR errors negatively
influence subsequent processes (Taghva et al.,
2006; Hwang et al., 2021a). This problem becomes
more severe in languages with complex and large
character sets, such as Korean and Japanese,
where OCR is relatively difficult (Rijhwani et al.,
2020). Deploying a separate post-OCR correction
module (Schaefer and Neudecker, 2020; Rijhwani
et al., 2020; Duong et al., 2021) can be an option,
but it is not a practical solution for real application
environments since it increases the entire system
size and maintenance cost.

We go beyond the traditional framework by

modeling a direct mapping from a raw input image
to the desired output. The proposed model Donut
is end-to-end trainable and does not dependent on
any other modules (e.g., OCR), that is, the model
is complete (self-contained). In addition to this, in
order to alleviate the dependencies on large-scale
real document images, we also present a synthetic
document generator SynthDoG and its application
to a pre-training of our model. Although the idea
is simple, our experiments on various datasets
including real industrial benchmarks show the
efficacy of our proposal. The contributions of this
work are summarized as follows:

1 We propose a novel approach for visual
document understanding. To the best of our
knowledge, this is the first method based on
a simple OCR-free transformer architecture
trained in an end-to-end manner.

2 We present a synthetic document image
generator and a simple pre-training task for
the proposed model. The datasets, pre-trained
model weights, and our code will be publicly
available at GitHub!.

3 We conduct extensive experiments and
analysis on both public benchmarks and
private industrial service datasets, showing
that the proposed method not only achieve
state-of-the-art  performances but also
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Figure 3: The overview of Donut. The encoder maps a given document image into embeddings. With the encoded
embeddings, the decoder generates a sequence of tokens that can be converted into a target type of information in

a structured form.

has many practical advantages (e.g., cost-
effective) in real-world applications.

2 Method

2.1 Preliminary: background

There have been various visual document
understanding (VDU) methods to understand
and extract essential information from the semi-
structured documents such as receipts (Huang
et al., 2019; Hwang et al., 2021b; Hong et al.,
2021), invoices (Riba et al., 2019), and document
forms (Hammami et al., 2015; Davis et al., 2019;
Majumder et al., 2020b).

Earlier attempts in VDU have been done with
vision-based approaches (Kang et al., 2014; Afzal
et al., 2015; Harley et al., 2015a), showing the
importance of textual understanding in VDU (Xu
et al., 2019). With the emergence of BERT (Devlin
et al., 2018), most state-of-the-arts (Xu et al., 2019,
2021; Hong et al., 2021) combined the computer
vision (CV) and natural language processing (NLP)
techniques and showed remarkable advances in
recent years.

Most recent methods share a common approach
that uses large-scale real document image datasets
(e.g., IIT-CDIP (Lewis et al., 2006)), and relies
on a separate OCR engine, where the model is
pretrained on the huge set of real document images.
At the test phase, the OCR engine performs on
unseen images to extract text information, which
is then fed to the following modules to achieve its
own objectives. Therefore, extra effort is required
to ensure the performance of an entire VDU model
by using a heavy OCR engine.

2.2 Document Understanding Transformer

We propose a simple transformer-based encoder-
decoder model, which is named Document
understanding transformer (Donut), an end-to-
end model that does not depend on any other
module such as OCR. We aim to design a simple
architecture based on the transformer (Vaswani
et al., 2017).Dount consists of a visual encoder and
textural decoder modules. The model directly maps
the input document image into a sequence of tokens
converted one-to-one into a desired structured
format. The overview of the proposed model is
shown in Figure 3.

Encoder. The visual encoder converts the input
document image x€R7*WXC into a set of
embeddings {z;|z;€R?,1<i<n}, where n is
feature map size or the number of image patches
and d is the dimension of the latent vectors
of the encoder. CNN-based models (such as
ResNet (He et al., 2015)) or Transformer-based
models (Dosovitskiy et al., 2021; Liu et al., 2021))
can be used as the encoder network. In this
study, if not mentioned otherwise, we use Swin
Transformer (Liu et al., 2021) because it shows
the best performance in our preliminary study in
document parsing. Swin Transformer first splits the
input image x into non-overlapping patches. Then,
the following Swin Transformer blocks where the
local self-attentions with the shifted window are
inside and patch merging layers are applied on
the patch tokens. The output of the final Swin
Transformer block {z} is used in the decoder.

Decoder.
textual decoder generates a token sequence (y;)

Given the representations {z}, the
m
1>
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Figure 4: The components of SynthDoG.

where y;€R" is an one-hot vector for the token
1, v is the size of token vocabulary, and m is a
hyperparameter, respectively. We use BART (Lewis
et al., 2020) the decoder architecture; specifically,
we use the multilingual BART (Liu et al., 2020)
model. To meet the applicable speed and memory
requirements for diverse real-world applications,
we used the first 4 layers of BART.

Model Input. Model training is done in a
teacher-forcing manner (Williams and Zipser,
1989). In the test phase, inspired by GPT-3 (Brown
et al., 2020), the model generates a token sequence
given a prompt. We simply introduce some new
special tokens for the prompt for each downstream
task in our experiments. The prompts that we use
for our applications are shown with the desired
output sequences in Figure 3.

Output Conversion. The output token sequence
is converted to a desired structured format. We
adopt a JSON format due to its high representation
capacity. As shown in Figure 3 a token sequence
is one-to-one invertible to a JSON data. We simply
add two special tokens [START_x] and [END_x] per
a field *. If the output token sequence is wrongly
structured (e.g., there is only [START name] exists
but no [END_name]), we simply treat the field
“name” is lost. This algorithm can easily be
implemented with some regular expressions. Our
code will be publicly available.

2.3 Pre-training

As aforementioned, current state-of-the-arts in
VDU are heavily relying on large-scale real
document images to train the model (Lewis et al.,
2006; Xu et al., 2019, 2021; Li et al., 2021).
However, this approach is not always available in
real-world production environments, in particular
handling diverse languages other than English.

Synthetic Document Generator. To remove
the dependencies on large-scale real document
images, we propose a scalable Synthetic Document
Generator, referred to as SynthDoG. The pipeline
of rendering images basically follows Yim et al.
(2021). As shown in Figure 4, the generated
image consists of several components; background,
document, text and layout. Background images
are sampled from ImageNet (Deng et al., 2009),
and a texture of document is sampled from the
collected photos. Words and phrases are sampled
from Wikipedia. A rule based random patterns are
applied to mimic the complex layouts in the real
documents. In addition, some major techniques
in image rendering (Gupta et al., 2016; Long
and Yao, 2020; Yim et al., 2021) are applied to
imitate real photographs. The example images
generated by SynthDoG are shown in Figure 5.
The implementation of our method will be publicly
available.

Task. We generated 1.2M synthetic document
images with SynthDoG. We used corpus extracted
from the English, Korean, and Japanese Wikipedia
and generated 400K images per language. The task
is simple. The model is trained to read all the texts
in the images in the reading order from top left to
bottom right. The example is shown in Figure 3.

2.4 Application

After the model learns how to read, in the
application stage (i.e., fine-tuning), we teach model
how to understand given the document image. As
shown in Figure 3, we interpret all downstream
tasks as a JSON prediction problem.

The decoder is trained to generate the JSON
which represents the desired output information.
For example, in the document classification task,
the decoder is trained to generate a token sequence
[START_class] [memo] [END_class] which is 1-
to-1 invertible to a JSON {"class": "memo"}. We
introduce some special tokens (e.g., [memo] is
used for representing the class “memo”), if such
replacement is available in the target downstream
task. The code will be publicly available at GitHub.

3 Experiments and Analysis

3.1 Downstream Tasks and Datasets

We provide the downstream tasks we run our
experiments on with the datasets in the following.
The samples of the datasets are shown in Figure 5.
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Figure 5: Our datasets. Left: example images from SynthDoG. Right: document images of the downstream
applications (from top right clockwise: (a) document classification, (b) visual question answering, (c) receipts

and business cards parsing).

3.1.1 Document Classification

To see whether the model understands document
types, we test a document classification task.

RVL-CDIP (Harley et al., 2015b). The RVL-
CDIP dataset consists of 400K grayscale images
in 16 classes, with 25K images per class. The 16
classes include letter, memo, email, and so on.
There are 320K training, 40K validation, and 40K
test images. Unlike other models which predict
the class label via a softmax on the encoded token
embedding, we make the decoder generate a JSON
that contains class label information to maintain the
uniformity of the task-solving method. We report
overall classification accuracy on the test set.

3.1.2 Document Parsing

To see the model fully understands the complex
layouts, formats, and contents in given document
images, we conduct document parsing, which
is a task of extracting the desired structured
information from the input document image (See
Figure 2).

Indonesian Receipts (Park et al., 2019). This
is a public benchmark dataset that consists of
1K Indonesian receipt images. The dataset also
provides OCR annotations (i.e., texts and their 2D
location information), and the desired structured
information (i.e., ground truth) in JSON format.

Japanese Business Cards (In-Service Data).
This dataset is also from one of our products. The
dataset consists of 20K Japanese business cards
images with corresponding ground truths in JSON
format.

Korean Receipts (In-Service Data). This
dataset is from one of our real products that are
currently deployed. The dataset consists of 55K
Korean receipt images with corresponding ground
truths in JSON format. The complexity of ground
truth JSONSs is high compared to the other two
parsing tasks.

3.1.3 Document VQA

To validate the further capacity of the model, we
conduct a document visual question answering task
(DocVQA). In this task, a document image and a
natural language question are given and the model
predicts the proper answer for the question by
understanding both visual and textual information
within the image. We make the decoder generate
the JSON that contains both the question (given)
and answer (predicted) to keep the uniformity of
the method.

DocVQA (Mathew et al., 2021). The dataset
consists of 50K questions defined on more than
12K document images. There are 39,463 training,
5,349 validation, and 5,188 test questions. The
evaluation metric for this task is ANLS (Average



use OCR #Params Time(ms)  Accuracy (%)
BERTgAsE v 110M + n/a’ 1392 89.81
ROBERTagasE v 125M + n/a' 1392 90.06
UniLMv2gase v 125M + n/a’ n/a 90.06
LayoutLMgask (W/ image) v 160M + n/a’ n/a 94.42
LayoutLMv2gasg v 200M + n/a’ 1489 95.25
Donut (Proposed) 156M 791 94.50

 Parameters for OCR should be considered for the non-E2E models.

Table 1: Classification accuracies on the RVL-CDIP dataset. The proposed Donut achieves a comparable accuracy
to the state-of-the-art model and the fastest inference speed. Note that the Donut does not rely on OCR while other

baseline models do.

Normalized Levenshtein Similarity), which is an
edit distance-based metric. We reported the ANLS
for the test set measured on the official evaluation
site.

3.2 Common Setting

We pre-trained the multi-lingual Donut on the
1.2M synthetic document images as explained in
Section 2.3 for an epoch. We fine-tune the model
while monitoring normalized edit distance on token
sequences of the validation set. We train the model
with 8 NVIDIA V100 GPUs and a mini-batch
size of 8. We use Adam (Kingma and Ba, 2015)
optimizer, the learning rate is scheduled and the
initial rate is selected from 2e-5 to 8e-5. For an
estimation of the number of parameters and speeds,
~ represents approximate estimation.

For the OCR-dependent baselines, provided
OCR results in the datasets are used if not
explained otherwise. In some tasks, states-of-the-
art commercial OCR products are used. At the
estimation of OCR speeds, we utilize Microsoft
OCR API used in Xu et al. (2021). In document
parsing tasks, we use CLOVA OCR? specialized in
the OCR on receipts and business cards images.

3.3 Results

3.3.1 Document Classification

The classification accuracies are shown in
Table 1. The proposed Donut shows a comparable
performance to state-of-the-arts without relying on
OCR or large-scale real document images. It is
surprising that our model shows a higher score
than one of the start-of-the-arts LayoutLM (Xu
et al., 2019) which has a dependency on large-
scale scanned document images IIT-CDIP (Lewis
et al., 2006) consists of 11M images. Note that,
unlike the other transformer-based models, the

Zhttps://clova.aifocr

token embeddings of our model can be dropped
in this task as the inference is done in an end-to-
end fashion.

3.3.2 Document Parsing

The normalized Tree Edit Distance (nTED)
scores (Hwang et al., 2021a) are shown in Table 2.
We compare the proposed model with the baseline
that has been in our real products for years.
For all domains including public and private in-
service datasets, our proposal shows the best n"TED
scores among the comparing models. Moreover, the
inference time is significantly reduced especially
for a domain that has high complexity, i.e.,
Korean receipt parsing task. This demonstrate
the effectiveness of our proposal for a real-world
application.

As areal product, localizing the extracted value
is sometimes demanded by customers. We show the
cross attention maps of the decoder given an unseen
Indonesian receipt in Figure 6. It shows interesting
results that the model attends to a desired location
in the given image. With simple heuristics, we
converted the attention maps into a bounding box
and the sample is shown in the figure. Although it
is not as accurate as commercial OCR products, the
model shows meaningful results that can be used
as an auxiliary indicator.

3.3.3 Document VQA

The results are shown in Table 3. Our approach
shows a promising result without depending on
OCR and large-scale real document images, e.g.,
IIT-CDIP (Lewis et al., 2006).

The first group of Table 3 utilizes the OCR
results provided in the dataset and the scores are
from Mathew et al. (2021). The second group is
from (Tito et al., 2021), where CLOVA OCR is
utilized to extract text information. The third group
utilizes Microsoft OCR API and both LayoutLM



Indonesian Receipt

Korean Receipt Japanese Business Card

use OCR Params Time (s) nTED Time (s) nTED Time (s) nTED
BERT-based Extractor”® v 86M' +n/at  0.89+0.54 113 1.14+1.74 21.67 0.83+0.50 9.56
SPADE (Hwang et al., 2021b) v 93MT +n/at 3324054 100 656+1.74 2165 3.34+0.50 9.77
Donut (Proposed) 156M* 1.07 8.45 1.99 5.87 1.39 3.70

* Our currently-deployed model for parsing business cards and receipts in our real products. The pipeline is based on Hwang et al. (2019).
T Parameters for token (vocabulary) embeddings are omitted for a fair comparison.

* Parameters for OCR should be considered for non-E2E models.

Table 2: The normalized tree edit distance (NnTED) scores on the three different document parsing tasks. The lower
nTED score denotes the better performance. Our Donut achieves the best nTED scores for all the tasks with
significantly faster inference speed. The gain is huge especially for the Korean Receipt parsing task, which is the

most complex.

OCR Params* Time (ms) ANLS
LoRRA v ~223M n/a 11.2
M4C v ~91M n/a 39.1
BERT5AsE v 110M n/a 57.4
CLOVA OCR v n/a > 3226 32.96
UGLIFT v0.1 v n/a > 3226 44.17
BERTgase v 110M + n/af 1517 63.54
LayoutLMgase v 113M + n/a 1519 69.79
LayoutLMv2pase v 200M + n/a 1610 78.08
Donut ~207M 809 47.14
+ 10K imgs of trainset 53.14

f Parameters for OCR should be considered for non-E2E models.
¥ Token embeddings for English is counted for a fair comparison.

Table 3: Average Normalized Levenshtein Similarity
(ANLS) score on the DocVQA dataset. The higher
ANLS score denotes the better performance. Our
Donut shows a promising result without using OCR
and pre-training with a large number of real images.
In contrast, the LayoutLM and LayoutLMv?2 were pre-
trained with the IIT-CDIP dataset consisting of 11M
images.

and LayoutLMv?2 are pre-trained with large-scale
scanned English document dataset (Lewis et al.,
2006) (11M images). Their scores are from Xu
etal. (2021). The gap between their scores and ours
implies the impact of pre-training on large-scale
real documents, which will be one of our future
works to tackle.

Donut shows reasonable performance with
faster inference speed than the comparison
methods. To show the potential ability of Donut,
we also show the performance of Donut by
extra pre-training with 10K real images of
DocVQA trainset. Although the additional pre-
training images are noisy and the number of
images is small (10K), it leads to a significant
performance improvement (47.14 — 53.14), which
demonstrates the importance of real document
images.
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Figure 6: Visualization of cross-attention map and its
application to bounding box localization. Left: tokens
and their corresponding regions in the image are
plotted. Right: detected bounding boxes are shown.

4 Related Work

4.1 Optical Character Recognition

Current trends in OCR are to utilize deep learning
models in its two sub-steps: 1) text areas are
predicted by a detector; 2) a text recognizer then
recognizes all characters in the cropped image
instances. Both are trained with a large-scale
datasets including the synthetic images (Jaderberg
et al.,, 2014; Gupta et al., 2016) and real
images (Lucas et al., 2003; Mishra et al., 2012;
Wang et al., 2011; Karatzas et al., 2015; Phan et al.,
2013).

Early text detection methods were based on
convolutional neural networks (CNNs) to predict
local segments and then applied heuristics to merge
the segments into detection lines (Huang et al.,
2014; Zhang et al., 2016). Later, following the
general object detection methods (Liu et al., 2016a;



He et al., 2017), region proposal and bounding
box regression based methods were proposed (Liao
et al., 2017; Minghui Liao and Bai, 2018; Zhang
et al., 2018). More recently, by focusing on the
homogeneity and locality of texts, component-
level approaches were proposed to predict sub-
text components and assemble them into a text
instance (Tian et al., 2016, 2019; Baek et al.,
2019b). By its nature, these can better adapt to
curved, long, and oriented texts.

Many modern text recognizer share a similar
approach (Borisyuk et al., 2018; Lee and Osindero,
2016; Liu et al., 2016b; Shi et al., 2016; Wang
and Hu, 2017; Shi et al., 2017) that can be
interpreted into a combination of several common
deep modules (Baek et al., 2019a). Given the
cropped text instance image, most recent text
recognition models apply CNNs to encode the
image into a feature space. A decoder is then
applied to extract characters from the features.

4.2 Visual Document Understanding

Classification of the document type is a
fundamental task but is a core step towards
automated document processing. Early methods
treated the problem as a general image
classification, so various CNNs were tested (Kang
et al.,, 2014; Afzal et al., 2015; Harley et al.,
2015a). Recently, with BERT (Devlin et al., 2018),
the methods based on a combination of CV and
NLP were widely proposed (Xu et al., 2019;
Li et al., 2021). As a common approach, most
methods rely on an OCR engine to extract texts;
then the OCR-ed texts are serialized into a token
sequence; finally they are fed into a language
model (e.g., BERT) with some visual features if
available. Although the idea is simple, the methods
showed remarkable performance improvements
and became a main trend in recent years (Xu et al.,
2021; Appalaraju et al., 2021).

Document parsing performs mapping each
document to a structured form consistent with
the target ontology or database schema. This
covers a wide range of real applications, for
example, given a bunch of raw receipt images,
a document parser can automate a major part
of receipt digitization, which has been required
numerous human-labors in the traditional pipeline.
Most recent models (Hwang et al., 2019; Majumder
et al.,, 2020a; Hwang et al., 2021b,a) take the
output of OCR as their input. The OCR results are

then converted to the final parse through several
processes, which are often complex. Despite the
needs in the industry, only a few works have been
attempted on end-to-end parsing. Recently, some
works are proposed to simplify the complex parsing
processes (Hwang et al., 2021b,a). But they still
rely on a separate OCR to extract text information.

Visual Question Answering (VQA) on
documents seeks to answer questions asked on
document images. This task requires reasoning
over visual elements of the image and general
knowledge to infer the correct answer (Mathew
et al., 2021). Currently, most state-of-the-arts
follow a simple pipeline consisting of applying
OCR followed by BERT-like transformers (Xu
et al., 2019, 2021). However, the methods work in
an extractive manner by their nature. Hence, there
are some concerns for the question whose answer
does not appear in the given image (Tito et al.,
2021). To tackle the concerns, generation-based
methods have also been proposed (Powalski et al.,
2021).

S Concluding Remarks

In this work, we propose a novel end-to-end
method for visual document understanding. The
proposed method, Donut, directly maps an input
document image into a desired structured output.
Unlike traditional methodologies, our method
does not depend on OCR and large-scale real
document images. We also propose a synthetic
document image generator, SynthDoG, which
plays an important role in pre-training of the model
in a curriculum learning manner. We gradually
trained the model from how to read to how to
understand through the proposed training pipeline.
Our extensive experiments and analysis on both
external public benchmarks and private internal
service datasets show higher performance and
better cost-effectiveness of the proposed method.
This is a significant impact as the target tasks are
already practically used in industries. Our future
work is to expand the proposed method to other
domains/tasks regarding document understanding.
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