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Abstract

Diagnosing and cleaning data is a crucial step for building robust machine learning
systems. However, identifying problems within large-scale datasets with real-world
distributions is challenging due to the presence of complex issues such as label
errors, under-representation, and outliers. In this paper, we propose a unified
approach for identifying the problematic data by utilizing a largely ignored source
of information: a relational structure of data in the feature-embedded space. To
this end, we present scalable and effective algorithms for detecting label errors and
outlier data based on the relational graph structure of data. We further introduce
a visualization tool that provides contextual information of a data point in the
feature-embedded space, serving as an effective tool for interactively diagnosing
data. We evaluate the label error and outlier/out-of-distribution (OOD) detection
performances of our approach on the large-scale image, speech, and language
domain tasks, including ImageNet, ESC-50, and MNLI. Our approach achieves
state-of-the-art detection performance on all tasks considered and demonstrates its
effectiveness in debugging large-scale real-world datasets across various domains.

1 Introduction

Identifying problems within datasets is crucial for improving the robustness of machine learning
systems and analyzing the model failures [43]. For instance, identifying mislabeled or uninformative
data help construct concise and effective training datasets [31], while identifying whether test data is
OOD or corrupted allows for more accurate model evaluation and analysis [52].

In recent years, efforts have been made to identify problematic data by utilizing unary scores on
individual data from trained models, such as estimating data influence [21], monitoring prediction
variability throughout training [50], and calculating prediction error margins [32]. However, identify-
ing such data can be challenging, particularly when dealing with large-scale datasets from real-world
distributions. In real-world settings, datasets may have complex problems, including label issues,
under-representation, and outliers, each of which can lead to the model error and prediction sensitivity
[22]. For example, Figure 2 shows that a neural network exhibits low negative prediction margins
and high loss values for both a sample with label error and outlier data, indicating that previous unary
scoring methods may have limitations in identifying the sources of problems.

In this work, we propose a unified framework for identifying label errors and outliers by leveraging
the feature-embedded structure of a dataset that provides richer information than individual data alone
[45, 34]. We measure the relationship among data in the feature embedding space while comparing
the assigned labels independently. By comparing input data and labels separately, we are able to
isolate the factors contributing to model errors, resulting in improved detection of the problematic
data. Based on this relational information, we construct a novel graph structure on the dataset and
identify whether the data itself or the label is problematic (Figure 1). To this end, we develop scalable
graph algorithms that efficiently identify label errors and outlier data points.
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Figure 1: The conceptual illustration of the conventional approaches (top) and our proposed approach
(bottom). While the previous approaches measure the prediction error or sensitivity on each data
point, our method identifies problematic data by leveraging the relational structure of data. In the
relation graph, positive edges signify complementary relation, negative edges denote conflicting
relation, and dashed lines indicate negligible relation between data.
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Figure 2: Data samples and their labels from ImageNet and the corresponding relation maps by an
MAE-Large model [13]. We report the prediction margin score (∈ [−1, 1]) and the loss value next to
the label. The color represents the relation value at the last converged checkpoint. We present the
detailed procedure for generating the relation maps in Section 3.4.

In Section 3.4, we further introduce a tool named data relation map that provides contextual infor-
mation on data points within the feature-embedded structure. This tool visualizes the relational
structure of a data sample and can serve as an interactive tool for diagnosing data. Specifically, a
data relation map measures the variance and mean value of relations between a data pair throughout
training. From Figure 2, we observe that the second and the third samples exhibit different relation
map patterns, although they have similar margin and loss scores. This highlights that the relational
structure provides complementary information not captured by the unary scoring methods.

Our approach only requires the model’s feature embedding and prediction score on data, making it
more scalable compared to methods that require calculating the network gradient on each data point
or retraining models multiple times to estimate data influence [37, 17]. Furthermore, our method is
domain- and model-agnostic, and thus is applicable to various tasks. We evaluate our approach on
label error and outlier/OOD detection tasks with large-scale image, speech, and language datasets:
ImageNet [41], ESC-50 [35], and MNLI [53]. Our experiments show state-of-the-art performance on
all tasks, demonstrating its effectiveness for debugging and cleaning datasets.

2 Related works

Label error detection Label errors in datasets can negatively impact model generalization and
destabilize evaluation systems [16, 32]. Prior works attempt to address this issue by detecting label
errors using bagging and bootstrapping [44, 39]. Other approaches have explored the use of neural
networks to learn data sampling schemes or data Shapley values [18, 9]. To mitigate overfitting on
label errors, Pleiss et al. [36] propose tracking the training process to measure the area under the
margin curve. Recent efforts have shown that simple scoring methods with large pre-trained models,
such as prediction margins or loss values, achieve comparable results to previous complex approaches
[31, 5]. Meanwhile, Wu et al. [55] propose a unified approach for learning with open-world noisy
data. However, this method involves a complicated optimization process during training, which is
not suitable for large-scale settings. Another line of approach to identifying label errors involves
measuring the influence of a training data point on its own loss [21, 37]. However, these approaches
require calculating computationally expensive network gradients on each data point, and their
performance is known to be sensitive to outliers and training schemes [2, 3]. In this work, we present
a scalable approach that leverages the data relational structure of trained models without necessitating
additional training procedures, thereby facilitating the practical analysis of problems in data.
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Outlier/OOD detection Detecting outlier data is crucial for building robust machine learning
systems in real-world environments [22]. A recent survey paper defines the problem of finding outliers
in training set as outlier detection and finding outliers in the inference process as OOD detection
[57]. The conventional approach for detecting outliers involves measuring k-nearest distance using
efficient sampling methods [46]. More recently, attempts have been made to detect outlier data using
scores obtained from trained neural networks, such as Maximum Softmax Probability [14], Energy
score [27], and Max Logit score [15]. Other approaches suggest adding perturbations on the inputs or
rectifying the activation values to identify the outlier data [26, 47]. Lee et al. [25] propose fitting a
Gaussian probabilistic model to estimate the data distribution. Recently, Sun et al. [48] propose a
non-parametric approach measuring the k-nearest feature distance. In our work, we explore the use
of the relational structure on the feature-embedded space for identifying outlier data. Our approach
is applicable to a wide range of domains without requiring additional training while outperforming
existing scoring methods on large-scale outlier/OOD detection benchmarks.

3 Methods

In this section, we describe our methodology for identifying label errors and outliers using a model
trained on the noisy training dataset. We exploit the feature-embedded structure of the learned neural
networks, which are known to effectively capture the underlying semantics of the data [38]. To this
end, we first define data relation to construct a data relational graph on the feature space. We then
introduce our novel graph algorithms for identifying label errors and outlier data. In Section 3.4, we
introduce the data relation map as an effective tool for diagnosing and contextualizing data.

3.1 Data relation

We describe our approach in the context of a classification task, while also noting that the ideas
are generalizable to other types of tasks as well. Let us assume we have a trained neural network
on a noisy training dataset T = {(xi, yj) | i = 1, . . . , n}. For xi ∈ X , we extract the feature
representation fi and the prediction probability vector pi from the model.

We propose a class of bounded kernel k : X × X → [0,M ] that measures the semantic similarity
between data points on feature space:

k(xi, xj) = |s(fi, fj) · c(pi,pj)|t. (1)

Here, t is a positive scalar value that controls the sharpness of the kernel value distribution. A
larger value of t makes a small kernel value smaller, which is effective in handling small noisy
kernel values. A scalar value s(fi, fj) ∈ R+ denotes a similarity measurement between features.
In our main experiments, we adopt the truncated cosine-similarity that has been widely used in
representation learning [42, 40]. We use the hinge function at zero, resulting in the following positive
feature-similarity function:

s(fi, fj) = max(0, cos(fi, fj)).

It is worth noting the utility of our framework is not limited to a specific kernel design. In Section 4.3,
we verify our approach maintains the best performance with s(fi, fj) defined as the RBF kernel [58].

While the feature similarity captures the meaningful semantic relationship between data points, we
observe that considering the prediction scores pi can further improve the quality of data identification.
To incorporate prediction scores into our approach, we introduce a scalar term c(pi,pj) that measures
the compatibility between the predictions on data points. Any positive and bounded compatibility
function is suitable for the kernel class defined in Equation (1). In our main experiments, we use the
predicted probability of belonging to the same class as the compatibility term c(pi,pj). Specifically,
given the predicted label random variables ŷi and ŷj , the proposed compatibility term is

c(pi,pj) = P (ŷi = ŷj) = pᵀ
i pj . (2)

From a different perspective, we interpret this compatibility term as a measure of confidence for
feature similarity. In Appendix D.4, we examine the effects of different design choices for the
compatibility term through empirical studies.
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Figure 3: A relation graph with samples from
ImageNet and the MAE-Large model [13]. We
denote the assigned label above each sample.
Here, the center image has a label error.

By incorporating the assigned label information with
the similarity kernel in Equation (1), we define the
relation function r : X ×Y ×X ×Y → [−M,M ]:

r((xi, yi), (xj , yj)) = 1(yi = yj) · k(xi, xj), (3)

where 1(yi = yj) ∈ {−1, 1} is a signed indicator
value. The relation function reflects the degree to
which data samples are complementary or conflict-
ing with each other. In Figure 3, the center image
with a label error has negative relations to the left
samples that belong to the same ground-truth class.
In contrast, the two left samples with correct labels
have a positive relation. We also note that samples
with dissimilar semantics exhibit near-zero relations.

Our relation function in Equation (3) only requires
the forward computation of neural networks, which
is embarrassingly parallelizable and scalable to
large-scale settings.

Interpretation To better understand our relation function, we draw a connection to the influence
function [37], which estimates the influence between data points by computing the inner product of
the network-weight gradient on the loss function ` of each data point as∇w`(xi)ᵀ∇w`(xj), where
w denotes the network weights. Following the convention, we consider an influence function on
the feed-forward layer, where `(xi) = h(f ′i) = h(wᵀfi). By the chain rule, we can decompose the
weight gradient as ∇w`(xi) = ∇f ′h(f ′i)f

ᵀ
i , and represent the influence as ∇f ′h(f ′i)

ᵀ∇f ′h(f ′j) · f
ᵀ
i fj .

Our relation function differs from the influence function in that it does not rely on feature gradients
∇f ′h(f ′i) to evaluate the relationship between data points. Instead, our relation function compares
model predictions and assigned labels independently using the terms c(pi,pj) and 1(yi, yj). Our
formulation does not require computationally expensive back-propagation and more robustly identifies
conflicting data information than influence functions which are known to be sensitive to outliers [2].
We provide a detailed theoretical analysis in Appendix A.4. In the following sections, we present
novel graph algorithms for identifying label errors and outliers by utilizing our relation function.

3.2 Label error detection

We consider a fully-connected undirected graph G = (V, E ,W), where the set of nodes V corresponds
to T and the weightsW on edges E are the relation values defined in Equation (3). For clarity, we
denote a data point by an index, i.e., T = {1, . . . , n} and r((xi, yi), (xj , yj)) = r(i, j). Additionally,
we set r(i, i) = 0 for i ∈ T . Consistent with previous works [31], we aim to measure the label
noisiness score for each data, where a lower score indicates a higher likelihood of label error. We
denote the label noisiness scores for T as s ∈ Rn, where s[i] is the score for data i.

As depicted in Figure 3, data with label errors exhibit negative relations with other samples, implying
that the data samples have similar features in the embedding space yet have dissimilarly assigned
labels. This indicates that a node’s edge weights measure the degree to which the assigned label
aligns with the labels of other nodes. However, simply aggregating all edge weights of a node can
yield suboptimal results, as negative edge weights can also contribute to the score for clean data, as
shown in Figure 3. In Appendix D.5, we provide a more detailed experimental analysis of this issue.

To rectify this issue, we develop an algorithm that takes into account the global structure of the graph,
not simply summing the edge weights of individual nodes. Specifically, we identify subsets of data
likely to have correct/incorrect labels and calculate the label noisiness scores based on them. To this
end, we partition the nodes into two groups such that the sum of edges between the groups has the
lowest negative value, meaning that the label information of the two groups is the most different.
Since the label error ratio is typically lower than the half of the training set, we estimate the smaller
set to be the noisy set N and formulate this as the following min-cut problem:

N ∗ = argmin
N⊂T

cut(N , T \ N )
(
:=
∑
i∈N

∑
j∈T \N

r(i, j)
)
, subject to |N | < n/2. (4)
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Figure 4: Illustration of our scoring algorithms for identifying label noise (left) and outliers (right).

The min-cut problem with the signed edges is NP-complete [11]. To solve this problem, we adopt the
Kerninghan-Lin algorithm, which finds a local minimum solution by iteratively updating the solution
[19]. However, the original algorithm that swaps data one by one at each optimization iteration
is not suitable for large-scale settings. To this end, we propose an efficient set-level algorithm in
Algorithm 1 that alternatively updates the noisy set N and label noisiness score vector s.

Specifically, given the current estimation of N , the cut value excluding edges of node i ∈ T is
cut(N \ {i}, T \ N \ {i}). Algorithm 1 measures the label noisiness score of node i by comparing
the objective values when including i in N and when including i in T \ N :

s[i] = cut(N ∪ {i}, T \ N \ {i})− cut(N \ {i}, T \ N ∪ {i}) =
∑

j∈T \N

r(i, j)−
∑
j∈N

r(i, j).

Algorithm 1 Label noise identification

Input: Relation function r, threshold value ε
Notation: The number of data n
for i = 1 to n do

# initialize label noisiness scores
s̄[i] =

∑n
j=1 r(i, j)

end for
s = s̄
repeat

# update noisy data subset
N = {i | s[i] < ε, i ∈ [1, . . . , n]}
# update label noisiness scores
for i = 1 to n do
s[i]← s̄[i]− 2

∑
j∈N r(i, j)

end for
until convergence
Output: s,N

Here we use the assumption r(i, i) = 0. In prac-
tice, the number of elements in N is small, so we
can efficiently update the score vector s by caching
the initial score vector s̄ as in Algorithm 1. Af-
ter calculating the score vector s, we update the
noisy set N by selecting nodes with score values
below the threshold ε. Figure 4 illustrates the op-
timization process. We can obtain the solution to
Equation (4) with ε = 0, while negative values of ε
result in smallerN consisting of data samples that
are more likely to have label noise. We provide
the sensitivity analysis of ε in Appendix C.1.

Algorithm 1 satisfies the convergence property in
Proposition 1. In Appendix A, we provide proof
and present an empirical convergence analysis
on large-scale datasets. We also conduct a run-
time analysis of our algorithm in Appendix A.3,
demonstrating that the computation overhead of
Algorithm 1 is negligible in large-scale settings.

Proposition 1. Algorithm 1 with a single node update at each iteration converges to local minima.

Complexity analysis The time complexity of Algorithm 1 is O(n2), proportional to the number
of edges in a graph. It is noteworthy that our method maintains the best performance when used
with graphs consisting of a small number of nodes, around 12k (Figure 5). This implies that we
can partition large datasets and run the algorithm repeatedly for each partition to enhance efficiency
while maintaining performance. In this case, the complexity becomes O(n/k · k2) = O(nk), with k
representing the size of each partition and n/k being the number of partitions. Also, computations on
these partitions are embarrassingly parallelizable, meaning that the complexity becomes O(k2) for
k � n in distributed computing environments.

3.3 Outlier/OOD detection

In the previous section, we presented a method for detecting label errors based on data relations
with similar feature embeddings but different label information. By employing the identical feature
embedding structure, we identify outlier data by measuring the extent to which similar data are absent
in the feature embedding space. To quantify the extent of a data point being an outlier, we aggregate
the similarity kernel values of a data point in Equation (1), thereby processing the entire relational
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information of the data point. Our approach leverages global information about the data distribution,
resulting in a more robust performance across a range of experimental settings compared to existing
methods that rely on local information such as k-nearest distance [48]. Specifically, for a subset
S ⊆ T and data x, we measure the outlier score as

outlier(x) =
∑
i∈S

k(x, xi).

Lower values in the outlier score indicate that the data are more distributionally outliers. We propose
to use a uniform random sampling for S , adjusting the computational cost and memory requirements
for the outlier score calculation to suit the inference environment. In Section 4.2, we verify our method
maintains the best OOD detection performance even when using only 0.4% of the data in ImageNet.

3.4 Data relation map

Contextualizing data and gaining an understanding of the underlying problems are important for
managing data quality. One effective approach is dataset cartography, which projects the dataset onto
a 2D plot [49]. Specifically, the approach draws a scatter plot of the mean and standard deviation
of the model’s prediction probabilities for each data sample during training. Inspired by the dataset
cartography, we propose a novel data contextualization tool, called the data relation map, which
visualizes the relationship between data along the training process. To this end, we uniformly store
checkpoints during training. We denote a set of these checkpoints asK, where rk refers to the relation
function for checkpoint k ∈ K. For each data sample i, we draw a scatter plot of the mean and
standard deviation of relation values {rk(i, j) | k ∈ K} for j ∈ T \ {i}.
In Figure 2, we provide relation maps of three samples from ImageNet, using 10 checkpoints of
MAE-Large [13]. The three samples each represent clean data, data with a label error, and outlier
data. From the figure, samples show different relation map patterns. Specifically, the relation map of
a clean data sample exhibits a majority of positive relations with relatively small variability. We note
that there are gray-colored relations in high variability regions (0.2<std), indicating that the model
resolves conflicting relations at convergence. On the other hand, the relation map of the sample with
a label error demonstrates a majority of negative relations. Notably, high variance relations result in
largely negative relations at convergence, suggesting that conflicts intensify. Lastly, the relation map
of the outlier data sample reveals that relations are close to 0 during training. These relation maps can
serve as a model-based fingerprint of the data, which our algorithm effectively exploits to identify
problematic data. We provide additional data relational maps for various models in Appendix E.1.

4 Experimental results

In this section, we experimentally verify the effectiveness of our approach in detecting label errors
and outliers. We provide implementation details including hyperparameter settings in Appendix C.1.
We provide qualitative results including detected label errors and outlier samples in Appendix E.2.

4.1 Label error detection

4.1.1 Setting

Datasets We conduct label error detection experiments on large-scale datasets: ImageNet [41], ESC-
50 [35], and MNLI [53]. ImageNet consists of about 1.2M image data from 1,000 classes. ESC-50
consists of 2,000 5-second environmental audio recordings organized into 50 classes. MNLI consists
of about 393k sentence pairs with textual entailment annotations. The task is to classify whether the
premise sentence entails or contradicts the hypothesis sentence or is neutral. For qualitative analysis,
we additionally consider SST2 [53], a binary sentiment classification dataset consisting of 67k movie
review sentences.

Following Pruthi et al. [37], we construct a noisy training set by flipping labels of certain percentages
of correctly classified training data with the top-2 prediction of the trained model. We use different
neural network architectures for constructing a noisy training set and detecting label errors to avoid
possible correlation. We leave a more detailed procedure for constructing the noisy training set in
Appendix C.2. When training the MAE-Large model [13] on ImageNet with 8% label noise, the vali-
dation top1-accuracy decreases by 1.7% compared to the performance of the model trained on the orig-
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Figure 5: Label error detection performance on ImageNet with MAE-Large according to (a) label
noise ratios and (b) the number of data. We obtain the results in (b) with 8% label noise. We report
performance values of all methods in Appendix D.1, with Tables 14 and 15.

inal training set, as reported in Appendix Table 8. The decrease becomes more significant with 15%
label noise, with a drop of 4.4%, highlighting the importance of label noise detection and cleaning.

Baselines We compare our method (Relation) to six baselines that are suitable for large-scale
datasets. We consider fine-tuned loss from pre-trained models (Loss) [5], prediction probability mar-
gin score (Margin) [31], and the influence-based approach called TracIn [37]. We also evaluate model-
agnostic scoring methods: Entropy, Least-confidence, and Confidence-weighted Entropy (CWE) [23].
For a fair comparison, we evaluate methods using a single converged neural network in our main ex-
periments, while also providing results with a temporal ensemble suggested by [37] in Appendix D.3.

Metric We evaluate the detection performance based on label noisiness scores by each method.
We note that detecting label errors is an imbalanced detection problem, which makes the AUROC
metric prone to being optimistic and misleading [7]. In this respect, we mainly report the AP (average
precision) and TNR95 (TNR at 0.95 TPR), and provide AUROC results in Appendix D.1.

4.1.2 Results and analysis

ImageNet We measure the label error detection performance on ImageNet with the synthetic label
noise by training an MAE-Large model [13]. Note that the model does not have access to information
about the changed clean labels during the entire training process. Figure 5 (a) shows the detection
performance over a wide range of label noise ratios from 4% to 15%. As shown in the figure, our
approach achieves the best AP and TNR95 performance compared to the baselines. Especially, our
method maintains a high TNR95 over a wide range of noise ratios, indicating that the number of data
that need to be reviewed by human annotators is significantly smaller when cleaning the dataset. In
Figure 9, we present detected label error samples by our algorithm.

It is worth noting that our method relies on the number of data for constructing a relation graph. To
measure the sensitivity of our algorithm to the number of data, we evaluate the detection performance
using a reduced number of data with uniform random sampling. Figure 5 (b) shows the detection
performance on 8% label noise with MAE-Large. From the figure, we find that our algorithm
maintains the best detection performance even with 1% of the data (12k). This demonstrates that
our algorithm is effective even when only a small portion of the training data is available, such as
continual learning or federated learning [33, 30]. In Table 1 (a), we provide detection performance for
different scales of MAE models on 8% label noise. The table shows our approach achieves the best
AP with MAE-Base, verifying the robustness of our approach to the network scales. From the table,
we note that larger models are more robust to label noise and show better detection performance.

Speech and language domains We apply our method to speech and language domain datasets:
ESC-50 [35] and MNLI [53]. We design the label noise detection settings identical to the previous
ImageNet section. Specifically, we train the AST model [10] for ESC-50 and the RoBERTa-Base
model [28] for MNLI under the 10% label noise setting. Table 1 (b) shows our approach achieves
the best AP and TNR95 on the speech and language datasets, demonstrating the generality of our
approach across various data types.
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Table 1: Label error detection performance on ImageNet with 8% label noise. Baseline refers to the
best performance among the six baselines considered in Figure 5. In Table (c), the evaluation metric
is AP. We report the performance of all baselines in Appendix D.1, with Tables 9 to 11.

(a) Model architecture scales
Scale Metric Baseline Relation

Base AP 0.477 0.514
TNR95 0.488 0.672

Large AP 0.484 0.526
TNR95 0.521 0.695

(b) Speech/language domains
Dataset Metric Baseline Relation

ESC50 AP 0.739 0.779
TNR95 0.793 0.847

MNLI AP 0.764 0.766
TNR95 0.514 0.660

(c) Realistic label noise scenario
Model Baseline Relation

MAE 0.708 0.733
BEIT 0.719 0.737
ConvNeXt 0.713 0.735
ConvNeXt-22k 0.724 0.744

Realistic label noise The ImageNet validation set is known to contain numerous label errors [32].
To tackle this issue, Beyer et al. [4] cleaned the labels with human experts and corrected around
29% of the labels via multi-labeling. With this re-labeled validation set, we conduct experiments
under the realistic label noise, with the task of detecting the data samples with changed labels. We
measure the detection performance with MAE-Large [13], BEIT-Large [1], and ConvNeXt-Large
[29] models. To examine the impact of pre-training on external data, we also include ConvNeXt
pre-trained on ImageNet-22k, denoted as ConvNeXt-22k. We construct the relation graph using only
the validation set, considering scenarios where the training data are not available. Table 1 (c) verifies
that our approach outperforms the best baseline across various models. The results on ConvNeXt-22k
indicate that pre-training on external data improves the detection performance.
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Figure 6: Label error detection performance of
relation graph throughout the MAE-Large training
process on ImageNet with 8% label noise.

Memorization issue We investigate the im-
pact of large neural networks’ ability to memo-
rize label errors on detection performance [59].
In the left figure of Figure 6, we find that the AP
score decreases as the training progresses after
30 epochs with MAE-Large which converges at
50 epochs. The right figure of Figure 6 plots
the precision-recall curves, where we observe
that precision increases at low recall area but
decreases at mid-level recall (∼ 0.5) as the train-
ing progresses. This suggests that training has
both positive and negative effects on detecting
label noise, and we speculate that memorization
is one cause. Leveraging these observations, we improve detection AP by 3.6%p by using a temporal
ensemble of models [24]. We provide a more detailed description and results in Appendix D.3.

4.2 Outlier/OOD detection

Baselines We consider the following representative outlier scoring approaches: Maximum Softmax
Probability (MSP) [14], Max Logit [15], Mahalanobis [25], Energy score [27], ReAct [47], KL-
Matching [15], and KNN [48]. We tune the hyperparameter k of the KNN method following the
guideline provided in the paper. We also evaluate famous outlier detection approaches, Iterative
sampling [46] and Local outlier factor [54].

OOD detection Following Sun et al. [48], we evaluate OOD detection performance on the Ima-
geNet validation set consisting of 50k in-distribution data samples, along with four distinct OOD
datasets: Places [60], SUN [56], iNaturalist [51], and Textures [6]. Each of these OOD datasets con-
sists of 10k data samples except for Textures which has 5,640 data samples. We also combine these
four datasets, denoted as ALL, and measure the overall OOD detection performance on this dataset.

Figure 7 shows OOD detection performance of MAE-Large on ALL outlier dataset. Note that our
approach and KNN both rely on the number of training data samples (|S|) for outlier score calculation.
We examine the effect of training set size by measuring the performance with a reduced number of
data using uniform random sampling. Figure 7 verifies that our approach outperforms other baselines
while maintaining performance even with 0.4% of the training dataset (5k). Note that KNN requires
hyperparameter tuning according to the training set size, whereas our approach uses the identical
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Figure 7: OOD detection performance on Ima-
geNet (ALL) with MAE-Large. Unary-best refers
to the best performance among the methods that
do not rely on the training data for outlier score
calculation. We provide performance values of all
baselines in Appendix D.2, with Table 16.
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Figure 8: The detection AP of the MAE-Large
model across a range of kernel temperatures t.
The dashed blue line means the performance of
the best baseline.

Table 2: Outlier detection performance with Vit-Base on noisy ImageNet-100. Some OOD scoring
methods (Mahalanobis, ReAct, KL-Matching) are excluded from the comparison because they require
a clean training dataset which is not available in the outlier detection setup.

(a) ImageNet-100 with SUN

Method AUROC AP TNR95

MSP 0.708 0.335 0.032
Max Logit 0.499 0.216 0.011
Energy 0.417 0.106 0.010
KNN 0.990 0.899 0.960
Iterative sampling 0.973 0.687 0.903
Local outlier factor 0.986 0.850 0.941

Relation (Ours) 0.993 0.906 0.971

(b) ImageNet-100 with iNaturalist

Method AUROC AP TNR95

MSP 0.706 0.309 0.040
Max Logit 0.469 0.171 0.012
Energy 0.375 0.075 0.012
KNN 0.993 0.923 0.972
Iterative sampling 0.979 0.734 0.922
Local outlier factor 0.990 0.890 0.958

Relation (Ours) 0.995 0.940 0.982

hyperparameter (t = 1) regardless of the size. In Appendix D.2, Tables 16 and 17, we provide OOD
detection results on four individual OOD datasets as well as the performance with ResNet-50 [12],
where our approach achieves the best OOD detection performance over the nine baselines considered.

Outlier detection We perform outlier detection experiments following the methodology by Wang
et al. [54], where the training set contains outlier data with random labels. We construct the noisy
ImageNet-100 training sets by using iNaturalist [51] and SUN [56] datasets. We train a ViT-Base
model [8] from scratch on these noisy training datasets, and measure outlier detection performance
using the trained model. For a more detailed description, please refer to Appendix C.3.

Table 2 shows the outlier detection results on two outlier datasets. As indicated, our method achieves
the best performance in both outlier settings, demonstrating its effectiveness in outlier detection. It is
worth noting that the considered OOD scoring methods (MSP, Max Logit, Energy) do not achieve
good outlier detection performance. We speculate that this is due to the overfitting of the neural
network’s predictions on outliers.

Detecting outliers in validation set We further utilize our method for identifying outliers in the
validation set by retrieving data samples with the lowest outlier score (Section 3.3). In Figure 10, we
present samples detected by our algorithm from ImageNet and SST2. In the figure, we observe that
these samples are not suitable for measuring the predictive performance on labels, which should be
excluded from the evaluation dataset.

4.3 Ablation study

Temperature t In Equation (1), we introduced a temperature t, where a large value of t increases
the influence of large relation values in our algorithm. We conduct sensitivity analysis on t with
MAE-Large on ImageNet under 8% label noise. Figure 8 shows the effect of the temperature value
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Negative Positive (-0.850) Positive (-0.846)

Figure 9: Detected data samples with label errors (marked in red) from ImageNet (top) and SST2
(bottom). We present samples with conflicting relations next to the detected samples and denote the
corresponding relation value in parenthesis. We present more samples in Appendix E.2, Figure 14.

Flute Airship Vase Honeycomb Maze Alligator lizard Cockroach

“leather pants" “give a backbone to the company" “the israeli/palestinian conflict as"

Positive Positive Negative

Figure 10: Data samples with the lowest outlier scores by our method on ImageNet (top) and SST2
(bottom) validation sets. We denote the assigned labels above each data sample. We present more
outlier samples in Appendix E.2, Figure 15.

on our detection algorithm’s performance. From the figure, we observe that the label error detection
performance increases as the t value increases, saturating at t = 6. In the case of OOD detection, we
achieve the best performance at around t = 1. Our algorithm outperforms the best baseline over a
wide range of hyperparameters, demonstrating the robustness of our algorithm to the hyperparameter.

Table 3: Comparison of similarity kernel designs.
Baseline represents the best baseline performance.
The term c denotes our compatibility term in Equa-
tion (2). Note, Cos · c is the kernel function consid-
ered in our main experiments, and RBF / Cos refers
to our method without the compatibility term c.

Metric Baseline RBF Cos RBF · c Cos · c
AP 0.484 0.470 0.471 0.525 0.526
TNR95 0.521 0.668 0.671 0.703 0.695

Similarity kernel design We present an em-
pirical analysis of the kernel design choices.
Specifically, we replace the cosine similarity
term in Equation (1) as the RBF kernel and eval-
uate the detection performance. We further con-
duct an ablation study on compatibility terms
(Equation (2)). Table 3 summarizes the label
error detection performance with different ker-
nel functions on ImageNet with 8% noise ratio.
The table shows that our approach largely out-
performs the best baseline even with the RBF
kernel. Also, we find that our approach without the compatibility term shows comparable AP perfor-
mance while significantly outperforming baselines in TNR95. These results demonstrate the generality
and utility of our relational structure-based framework, which is not limited to a specific kernel design.

5 Conclusion

In this paper, we propose a novel data relation function and graph algorithms for detecting label
errors and outlier data using the relational structure of data in the feature embedding space. Our
approach achieves state-of-the-art performance in both label error and outlier/OOD detection tasks, as
demonstrated through extensive experiments on large-scale benchmarks. Furthermore, we introduce
a data contextualization tool based on our data relation that can aid in data diagnosis. Our algorithms
and tools can facilitate the analysis of large-scale datasets, which is crucial for the development of
robust machine-learning systems.
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A Algorithm analysis

A.1 Proof

In this section, we provide proof for Proposition 1. Recall that Algorithm 1 updates an estimated
noisy setN at a set-level asN = {i | s[i] < ε}. We can also conduct Algorithm 1 with a single node
update by moving one sample at each iteration, referred to as a sample-level version of Algorithm 1.
Specifically, let v ∈ Rn such that v[i] = −1 for i ∈ N and v[i] = 1 for else. Then we move a sample
k to another partition at each iteration, where k = argmini∈T v[i]s[i]. The algorithm stops when
0 ≤ v[k]s[k].
Proposition 1. Algorithm 1 with a single node update at each iteration converges to local minima.

Proof. The change in the objective value of Equation (4) by moving data i from T \ N to N is∑
j∈T \N

r(i, j)−
∑
j∈N

r(i, j), (5)

where the change by moving data i from N to T \ N is∑
j∈N

r(i, j)−
∑

j∈T \N

r(i, j).

Algorithm 1 updates the score s by Equation (5) as

s[i] =
∑
j∈T

r(i, j)− 2
∑
j∈N

r(i, j) =
∑

j∈T \N

r(i, j)−
∑
j∈N

r(i, j).

The change in the objective value by moving data i to another partition becomes s[i] for i ∈ T \ N
and−s[i] for i ∈ N , which is v[i]s[i]. Therefore, moving a sample with a negative value of v[i]s[i] to
another partition guarantees a decrease in the objective function value. Because a cut value of a graph
is bounded, the algorithm converges to local minima by the monotone convergence theorem.

A.2 Empirical convergence analysis

We conduct an empirical study on the convergence of Algorithm 1. Specifically, we randomly sample
100,000 data from ImageNet and construct a relation graph. We compare the set-level Algorithm 1
and the original Kerninghan-Lin algorithm in Figure 11. The figure indicates that both algorithms
converge to local minima, while our set-level algorithm converges faster. Additionally, we observe
that the set-level algorithm achieves a lower objective value, verifying its effectiveness in large-scale
settings.

A.3 Computation time comparison

In this section, we measure the time spent on detection algorithms. We use 1 RTX3090-Ti GPU
and conduct experiments on the full ImageNet training set. Table 4 compares computation time
for Algorithm 1 and feature calculation. Note that all existing methods based on neural networks,
including ours, require the calculation of features. The table shows that Algorithm 1 (excluding
feature calculation) requires significantly less computation time than forward computation. We also
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Figure 11: Empirical convergence analysis of min-cut algorithms. Set denotes Algorithm 1 and Single
denotes the Kerninghan-Lin algorithm which updates a single node at each optimization step.
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Table 4: Time spent (s) for label error detection (ImageNet,
MAE-Large). Feature indicates the total computing time for
calculating feature embeddings of a dataset, and Gradient
means the total computing time for calculating network gra-
dient on data. Algorithm 1 indicates the time spent by our
algorithm excluding feature calculation.

Model Feature Algorithm 1 Gradient

MAE-Base 2300 400 6000
MAE-Large 6900 420 21000

Table 5: Time spent per sam-
ple (ms) for OOD detection (Ima-
geNet, MAE-Large). Unary refers
to methods using logit or probabil-
ity scores.

Model Unary Relation

MAE-Large 12.2 12.3
ResNet-50 8.1 8.2

observe that our algorithm efficiently scales up to larger neural networks which have a larger number
of feature embedding dimensions. It is also worth noting that computing gradient takes a much
longer time and also requires a large memory budget, demonstrating the efficiency of our algorithm
in large-scale label error detection.

In Table 5, we measure the time spent for OOD detection on the full ImageNet training set. Computing
our kernel similarity is embarrassingly parallelizable on GPUs. As shown in the table, the overhead
time for computing our outlier scores is negligible compared to the time spent for the neural network
forward pass on a single data point. Note that we can further reduce the time cost and memory
requirements by measuring the outlier score on a subset of the training set as shown in Figure 7.

A.4 Interpretation of relation function

We establish an understanding of our relation function in Equation (3) by drawing a connection
to the influence function [37]. For simplicity, we consider the influence function with a single
checkpoint, where the influence between data xi and xj is given by ∇w`(xi)ᵀ∇w`(xj). Here, `
denotes the loss function, and w denotes the weight of the checkpoint. We consider the influence
function at the feed-forward layer, where `(xi) = h(f ′i) = h(wᵀfi), following the convention
[37]. By the chain rule, we can decompose the weight gradient as ∇w`(xi) = ∇f ′h(f ′i)f

ᵀ
i , and

represent the influence as ∇f ′h(f ′i)
ᵀ∇f ′h(f ′j) · f

ᵀ
i fj . In contrast, our relation function has a form of

1(yi = yj) · |s(fi, fj) · c(pi,pj)|t.
The main distinction between our relation function and the influence function is the existence of
the feature gradient term ∇f ′h(f ′i). As observed in Barshan et al. [2], outliers have a large feature-
gradient norm, leading to difficulties in detecting label errors. Specifically, let us consider the weight
w at the classifier layer, where the function h is the softmax cross-entropy loss function. As Pruthi
et al. [37], we can express the feature gradient inner-product as

∇f ′h(f ′i)
ᵀ∇f ′h(f ′j) = (yi − pi)

ᵀ(yj − pj),

where yi denote the one-hot label. The equation above shows that the correctly classified data with
yi ≈ pi yields near zero inner-product values, whereas outliers with high entropy predictions exhibit
large inner-product values. Consequently, existing influence-based label error detection methods,
which detect label errors by identifying data with high influence values, have degraded performance
in the presence of outliers [2].

Our relation function differs from influence functions in that it separates label and prediction infor-
mation using a label comparison term 1(yi = yj) and a compatibility term c(pi,pj), respectively.
Outlier data typically have a high entropy of model predictions, resulting in lower compatibility
values with other data [14]. On the other hand, normal data with label errors exhibit high compatibil-
ity values with other normal data. Our detection algorithms exploit these differences and achieve
improved detection performance compared to the influence functions.

B Additional discussions

Why does relation graph work? We discuss the conceptual differences between our relation
graph-based approach and previous baselines. Firstly, our method is data-centric, whereas the
previous approaches rely on a unary score by models. Our approach identifies problematic data by
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Table 6: Hyperparameter settings. We use identical
hyperparameters for all experiments of each task
regardless of model types.

Task t (Equation (1)) ε (Algorithm 1)

Label error 4 −0.05
Outlier 6 -
OOD 1 -

Table 7: Label error detection performance
over a range of ε values (ImageNet 8% noise,
MAE-Large).

Metric \ ε -0.1 -0.05 0.0 0.05

AP 0.527 0.527 0.522 0.509
TNR95 0.692 0.695 0.696 0.690

comparing them to other data, which leads to more reliable identification of problematic data than
unary scoring methods that are vulnerable to overfitting [36]. Secondly, our approach aggregates
global relational information, whereas previous methods rely on local information such as k-nearest
distance [48]. Considering all edge connections, our method obtains more representative information
about the data distribution. Through temperature parameter t and efficient graph algorithms, we
effectively process the entire relations and achieve the improved identification of problematic data.

Limitations and future works There are several promising future directions for our work. Firstly,
the current experiments are limited to the classification task, and it would be valuable to apply our
approach to a wider range of tasks, such as segmentation or generative models. These tasks may
introduce new and interesting categories of problematic data arising from different label spaces
and data structures. Secondly, integrating our method with human annotation and model training
processes will also be valuable. This could involve using our approach to identify inconsistencies in
label assignments or to conduct a fine-grained evaluation of models.

Broader impact Regarding social impact, we anticipate that our method will largely reduce the
cost of the data cleaning and annotation process, while also providing developers with valuable
insights into their data and training process through our data relation map. We do not anticipate
negative social effects, as our method does not deal with socially sensitive issues.

C Experiment settings

C.1 Implementation details

Models For label error detection, we train models on datasets with label noise. In the case of
ImageNet, we fine-tune the pre-trained MAE models following the official training codes1, which
train MAE-Large for 50 epochs and MAE-Base for 100 epochs. It is worth noting that the masked
auto-encoding pre-training process of MAE does not utilize label information. We use 8 RTX3090-Ti
GPUs for the training and 1 RTX3090-Ti GPU for executing our algorithm. In the case of ESC-50,
we fine-tune the AST model for 25 epochs following the official training codes2. In the case of
language domain tasks, we fine-tune RoBERTa-Base following the official training codes3, where
we train models for 5 epochs. For other models, we use the trained models provided by the Timm
library4. For all experiments, we use the inputs of the classification layers as feature embeddings. In
the case of RoBERTa, this corresponds to the encoder output of the [CLS] token.

Hyperparameter As shown in Figure 8, we observe that a large value of temperature t benefits
label error detection, while a moderate temperature value around 1 shows the best performance on
OOD detection. We summarized the hyperparameter used in our experiments in Table 6. Note we
use ε = −0.05 in Algorithm 1 after scaling the label noisiness score to have a maximum absolute
value of 1. We observe that the conservative estimation of noisy set N by using small negative ε
values leads to slightly better results than ε = 0, as shown in Table 7. The results in the table confirm
that our method performs effectively over a wide range of ε values, outperforming the best scores of
0.484 AP and 0.521 TNR95 from the six baselines tested.

1https://github.com/facebookresearch/mae
2https://github.com/YuanGongND/ast
3https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
4https://github.com/rwightman/pytorch-image-models
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Table 8: Validation top-1 accuracy of MAE-Large trained on ImageNet with noisy labels.

Label Noise Ratio 0. 0.04 0.08 0.12 0.15

Top-1 Accuracy 85.89 84.96 84.15 82.88 81.50

Table 9: Label error detection performance on various scales of MAE (ImageNet, 8% noise).

Scale Metric Entropy Least-conf. CWE Loss TracIn Margin Relation

Base AP 0.231 0.280 0.373 0.412 0.393 0.477 0.514
TNR95 0.12 0.217 0.132 0.223 0.488 0.342 0.672

Large AP 0.246 0.282 0.397 0.424 0.415 0.484 0.526
TNR95 0.137 0.270 0.160 0.276 0.521 0.392 0.695

Other tricks We find that small noisy kernel values accumulate errors as we consider large numbers
of data. To resolve this issue, we clamp small similarity kernel values that fall below an absolute
value of 0.03 as zero in Equation (1).

C.2 Synthetic label noise

In Section 4.1, we conduct controlled experiments by generating synthetic label noise. Specifically,
we flip labels of a certain percentage of training data with the top-2 prediction of trained models on
correctly classified data. For the label flip, we use MAE-Huge for ImageNet and RoBERTa-Large
for language datasets. Note that we did not use these models for detecting label errors to prevent
possible correlations. In the case of speech domain, we use the identical AST architecture. We
note that the original ImageNet training set may contain label issues which can lead to misleading
experimental results [32]. Therefore, we remove about 4% of data that are likely to have label issues
by following Northcutt et al. [31] with MAE-Huge, resulting in a total of 1,242,890 data samples.
We conduct label error detection experiments on this pre-cleaned training set. In Table 8, we provide
the top-1 validation accuracy of MAE-Large trained on training sets with noisy labels, demonstrating
the importance of label noise identification and cleaning.

C.3 Outlier detection

As outlier detection is not well-benchmarked in modern computer vision [57], we design an exper-
imental setup with the ImageNet dataset and two outlier datasets: SUN [56] and iNaturalist [51],
each with 10k outlier data. To ensure an appropriate outlier data ratio (∼8%), we use ImageNet-100
[20], a subset of ImageNet consisting of 120k data from 100 classes. We adopt the outlier detection
setting of Wang et al. [54], where the training set has the outlier data with random labels. To consider
multiple types of outlier data, we construct two noisy training sets: ImageNet-100 with SUN and
ImageNet-100 with iNaturalist. We train a ViT-Base model [8] from scratch for 300 epochs on these
noisy training datasets and measure outlier detection performance using the trained model.

D Additional experimental results

D.1 Label error detection

In this section, we provide the exact performance values for Figure 5, including AUROC results.
We report label error detection performances under various noise levels in Table 14, and provide
performances according to the number of data in Table 15. The tables confirm that our relation graph
approach achieves the best label error detection performances in all three metrics, regardless of the
noise ratio and the number of data. In Tables 9 to 11, we provide performance values of all baselines
considered in Table 1.
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Table 10: Label error detection performance on speech (ESC-50) and language (MNLI) datasets
with 10% label noise. For the ESC-50, we use the AST model [10], and for the MNLI, we use the
RoBERTa-Base model [28].

Dataset Metric Entropy Least-conf. CWE Loss TracIn Margin Relation

ESC-50 AP 0.715 0.737 0.720 0.737 0.739 0.737 0.779
TNR95 0.784 0.783 0.790 0.783 0.789 0.793 0.847

MNLI AP 0.199 0.197 0.753 0.764 0.724 0.754 0.766
TNR95 0.103 0.104 0.494 0.497 0.510 0.514 0.660

Table 11: Label error detection AP on ImageNet validation set. All the model scales are Large.

Model Entropy Least-conf. CWE Loss TracIn Margin Relation

MAE 0.558 0.609 0.688 0.703 0.695 0.708 0.733
BEIT 0.614 0.644 0.707 0.719 0.718 0.718 0.737
ConvNeXt 0.587 0.625 0.696 0.710 0.700 0.713 0.735
ConvNeXt-22k 0.617 0.642 0.707 0.722 0.719 0.724 0.744

Table 12: Label error detection AP by the temporal model ensemble with 4 MAE-Large checkpoints
(ImageNet, 8% label noise). In parenthesis, we denote the performance gain compared to the detection
by a single converged model.

Entropy Least-conf. CWE Loss TracIn Margin Relation

0.246 (0.007) 0.282 (0.001) 0.397 (0.031) 0.465 (0.041) 0.449 (0.034) 0.544 (0.06) 0.562 (0.036)

D.2 OOD detection

In Tables 16 and 17, we provide OOD detection results on individual datasets mentioned in Section 4.2:
Places, SUN, iNaturalist, and Textures. We report the OOD detection performance of MAE-Large in
Table 16 and the performance of ResNet-50 in Table 17. The tables demonstrate that our approach
achieves the best OOD detection performance on three out of four datasets considered, while achieving
the best overall performance. Furthermore, our method shows the best performance on all three
metrics with both models, which highlights its effectiveness in detecting OOD data.

D.3 Temporal model ensemble

Following Pruthi et al. [37], we measure the label error detection performance by using the temporal
model ensemble. Specifically, we average the label noisiness scores from 4 checkpoints that are
uniformly sampled throughout training. Table 12 shows that this technique improves the performance
of all methods, with our approach still exhibiting the best performance. These results confirm the
effectiveness of temporal ensembles when more computation and storage are available.

D.4 Compatibility term design

In Equation (2), we propose a compatibility term that measures a dot-product between prediction
probability vectors. We denote this term as Dot. In Table 13, we evaluate other types of compatibility
terms. Specifically, we consider a similarity kernel without the compatibility term, denoted as None,
and also consider a distance-based compatibility term c(pi,pj) = ‖pi−pj‖2, referred to as Distance.
Table 13 shows that our relation graph outperforms the best baseline regardless of the kernel design,
especially on the TNR95 metric by a large margin. The results show that the dot-product compatibility
term performs comparably to the distance-based compatibility term, slightly outperforming it on the
AP metric. By comparing None to others, we verify the effectiveness of the compatibility term.
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Table 13: Comparison of the compatibility terms. Baseline denotes the best baseline performance.

Task Metric Baseline None Distance Dot

Label Error AP 0.484 0.471 0.506 0.526
(8%) TNR95 0.521 0.671 0.708 0.695

OOD AP 0.854 0.855 0.857 0.874
(ALL) TNR95 0.590 0.630 0.637 0.636
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Figure 12: Normalized histogram of label noisiness scores by simple edge aggregation (Sum) and
min-cut. Arrows indicate changes in the density functions.

D.5 Analysis on edge aggregation

In this section, we analyze the difference between label noisiness scores calculated using min-cut and
simple edge sum. Specifically, in Figure 12, we draw histograms of label noisiness scores for two
groups of data: one with clean labels and the other with label errors. The figure shows that the score
calculated through min-cut shifts the density in a positive direction for data with clean labels and in a
negative direction for data with label errors, compared to the simple edge sum. This indicates that the
label noisiness score calculated with min-cut better separates label errors from the clean data. In this
case, TNR95 increases from 0.628 to 0.647 by applying the min-cut.

E Additional qualitative results

E.1 Relation map

In Figure 13, we present additional relation maps on ImageNet. We draw the relation maps with
MAE-Large and ResNet-50. Note, MAE-Large utilizes masked auto-encoding pre-training whereas
ResNet-50 is trained from scratch. From the figure, we observe that the models exhibit similar
distributions of positive and negative relations for each data point. However, the ResNet model tends
to have an overall larger variance of relation, indicating that the pre-training process reduces the
relation variance and is helpful in forming relationships between data.

E.2 Qualitative results

We present problematic data samples detected by our algorithm. Specifically, Figure 14 shows
ImageNet samples with label errors and their most conflicting data samples having negative relation
values. Figure 15 shows the outlier data detected by our algorithm on the ImageNet validation set,
indicating the existence of inappropriate data for evaluation. We also present results on SST2 [53], a
binary text sentiment classification dataset, in Tables 18 and 19.
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Table 14: Label error detection performance on a range of label error ratios (MAE-Large, ImageNet).

AUROC AP TNR95
Method \ Ratio 4% 8% 12% 15% 4% 8% 12% 15% 4% 8% 12% 15%

Entropy 0.790 0.796 0.801 0.803 0.153 0.246 0.334 0.389 0.115 0.137 0.162 0.181
Least-conf. 0.829 0.836 0.843 0.847 0.176 0.282 0.380 0.443 0.223 0.270 0.327 0.368
CWE 0.845 0.845 0.845 0.844 0.301 0.397 0.471 0.506 0.135 0.160 0.188 0.212
Loss 0.864 0.864 0.865 0.865 0.328 0.424 0.497 0.530 0.229 0.276 0.334 0.374
TracIn 0.889 0.888 0.887 0.885 0.303 0.415 0.498 0.536 0.503 0.521 0.556 0.582
Margin 0.876 0.875 0.876 0.876 0.403 0.484 0.544 0.568 0.346 0.392 0.457 0.505

Relation (Ours) 0.917 0.914 0.910 0.904 0.437 0.526 0.590 0.611 0.695 0.695 0.687 0.683

Table 15: Label error detection performance according to the number of data (MAE-Large, ImageNet, 8% label noise).

AUROC AP TNR95
Method \ #data 12k 25k 100k 400k 1.2M 12k 25k 100k 400k 1.2M 12k 25k 100k 400k 1.2M

Entropy 0.806 0.801 0.797 0.796 0.796 0.250 0.248 0.248 0.246 0.246 0.161 0.161 0.144 0.137 0.137
Least-conf. 0.844 0.841 0.836 0.837 0.836 0.289 0.287 0.284 0.283 0.282 0.255 0.269 0.275 0.277 0.27
CWE 0.852 0.850 0.845 0.845 0.845 0.390 0.394 0.392 0.394 0.397 0.169 0.184 0.177 0.163 0.16
Loss 0.869 0.868 0.863 0.864 0.864 0.415 0.421 0.418 0.421 0.424 0.260 0.298 0.282 0.284 0.276
TracIn 0.891 0.890 0.886 0.887 0.888 0.408 0.415 0.409 0.412 0.415 0.554 0.541 0.523 0.524 0.521
Margin 0.878 0.878 0.874 0.875 0.875 0.481 0.486 0.477 0.481 0.484 0.376 0.424 0.412 0.398 0.392

Relation (Ours) 0.910 0.912 0.912 0.914 0.914 0.502 0.515 0.518 0.523 0.526 0.679 0.692 0.692 0.696 0.695
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Table 16: OOD detection performance on ImageNet with MAE-Large.

AUROC AP TNR95
Method \ OOD dataset ALL Places SUN iNat. Textures ALL Places SUN iNat. Textures ALL Places SUN iNat. Textures

MSP 0.857 0.835 0.833 0.907 0.853 0.818 0.543 0.567 0.699 0.514 0.428 0.386 0.315 0.651 0.376
Max Logit 0.824 0.787 0.790 0.881 0.850 0.808 0.531 0.557 0.700 0.570 0.138 0.106 0.088 0.320 0.216
Mahalanobis 0.875 0.819 0.841 0.948 0.904 0.815 0.471 0.489 0.722 0.532 0.521 0.407 0.474 0.847 0.599
Energy 0.776 0.728 0.738 0.829 0.837 0.757 0.446 0.467 0.592 0.553 0.074 0.060 0.050 0.127 0.154
ReAct 0.896 0.862 0.872 0.944 0.909 0.857 0.586 0.611 0.746 0.634 0.550 0.449 0.463 0.793 0.547
KL-Matching 0.877 0.848 0.857 0.928 0.874 0.818 0.500 0.526 0.708 0.455 0.548 0.473 0.490 0.738 0.511
Iterative sampling 0.444 0.377 0.409 0.457 0.600 0.382 0.127 0.134 0.145 0.173 0.073 0.051 0.061 0.125 0.131
Local outlier factor 0.556 0.492 0.521 0.594 0.665 0.431 0.151 0.160 0.183 0.173 0.156 0.113 0.136 0.283 0.240
KNN 0.901 0.861 0.884 0.946 0.922 0.854 0.550 0.593 0.736 0.648 0.590 0.487 0.560 0.808 0.626

Relation (Ours) 0.911 0.883 0.894 0.951 0.921 0.874 0.618 0.653 0.782 0.642 0.636 0.547 0.587 0.810 0.641

Table 17: OOD detection performance on ImageNet with ResNet-50.

AUROC AP TNR95
Method \ OOD dataset ALL Places SUN iNat. Textures ALL Places SUN iNat. Textures ALL Places SUN iNat. Textures

MSP 0.847 0.829 0.836 0.896 0.814 0.782 0.469 0.501 0.641 0.369 0.496 0.471 0.461 0.634 0.352
Max Logit 0.844 0.827 0.833 0.894 0.807 0.767 0.445 0.468 0.605 0.331 0.482 0.463 0.448 0.622 0.340
Mahalanobis 0.693 0.644 0.628 0.735 0.823 0.567 0.228 0.209 0.270 0.375 0.265 0.194 0.229 0.436 0.371
Energy 0.836 0.821 0.825 0.883 0.798 0.721 0.398 0.407 0.503 0.269 0.481 0.463 0.448 0.622 0.340
ReAct 0.624 0.610 0.623 0.626 0.650 0.446 0.185 0.189 0.188 0.128 0.361 0.302 0.370 0.429 0.371
KL-Matching 0.838 0.811 0.822 0.894 0.817 0.784 0.439 0.463 0.693 0.404 0.307 0.268 0.224 0.477 0.291
Iterative sampling 0.624 0.530 0.578 0.659 0.809 0.516 0.167 0.190 0.229 0.380 0.150 0.112 0.134 0.223 0.269
Local outlier factor 0.648 0.556 0.602 0.686 0.824 0.533 0.175 0.199 0.244 0.397 0.186 0.143 0.167 0.272 0.315
KNN 0.822 0.743 0.783 0.884 0.922 0.764 0.335 0.384 0.546 0.774 0.380 0.295 0.372 0.587 0.496

Relation (Ours) 0.870 0.830 0.853 0.922 0.879 0.818 0.493 0.543 0.708 0.513 0.515 0.429 0.498 0.691 0.465
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Ostrich MAE ResNet

A
ve

ra
ge

Standard deviation

Parachute MAE ResNet

Clumber MAE ResNet Moped MAE ResNet

Norwich terrier MAE ResNet Ram MAE ResNet

Lemon MAE ResNet Barbell MAE ResNet

Bucket MAE ResNet Plate MAE ResNet

Water ouzel MAE ResNet Chihuahua MAE ResNet

Wool MAE ResNet Binder MAE ResNet

Figure 13: Data relation maps on ImageNet with MAE-Large and ResNet-50. We denote the assigned label above each
image. The color represents the relation value at the last checkpoint. The x-axis is the standard deviation and the y-axis is
the mean value of the relation values throughout training.
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Kite Bald eagle (-0.761) Bald eagle (-0.760) Bald eagle (-0.760) Bald eagle (-0.759)

Weasel Lesser panda (-0.761) Lesser panda (-0.761) Lesser panda (-0.758) Lesser panda (-0.757)

Ringlet Monarch (-0.763) Monarch (-0.754) Monarch (-0.753) Monarch (-0.753)

Impala Hartebeest (-0.794) Hartebeest (-0.768) Hartebeest (-0.763) Hartebeest (-0.761)

Passenger car Steam locomotive (-0.751) Steam locomotive (-0.751) Steam locomotive (-0.749) Steam locomotive (-0.747)

Redshank Ruddy turnstone (-0.761) Ruddy turnstone (-0.761) Ruddy turnstone (-0.758) Ruddy turnstone (-0.757)

Figure 14: The first column shows the data samples detected by our label error detection algorithm using
MAE-Large on ImageNet. We present the samples with the most conflicting relation next to the detected
samples. We denote the assigned label and the corresponding relation value above the image.
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Coffee mug Maze Stopwatch Barrow

Cockroach Airship Stone wall Vault

Apiary Torch Wig African grey

Whistle Stretcher Teddy Breastplate

Hammer Honeycomb Pretzel Alligator lizard

Vase Gasmask Barber chair Flute

Figure 15: Data samples with the lowest outlier score by our method on the
ImageNet validation set. We denote the assigned label above the image.
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Table 18: Text samples with label errors detected by our algorithm on the SST2
dataset. Below the text with label error, we present two text samples with
conflicting relations and denote the corresponding relation value in parenthesis.

Text Label

a damn fine and a truly distinctive and a deeply pertinent film Negative
- a breathtakingly assured and stylish work Positive (-0.980)
- a winning and wildly fascinating work Positive (-0.978)

fails to have a heart, mind or humor of its own Positive
- failing to find a spark of its own Negative (-0.970)
- this movie’s lack of ideas Negative (-0.958)

a ploddingly melodramatic structure Positive
- plodding action sequences Negative (-0.959)
- plodding picture Negative (-0.957)

is somewhat problematic Positive
- the more problematic aspects Negative (-0.945)
- the problematic script Negative (-0.930)

a bittersweet contemporary comedy Negative
- bittersweet film Positive (-0.940)
- of bittersweet camaraderie and history Positive (-0.921)

Table 19: Outlier text samples detected by our algorithm on the SST2 dataset.

Text Label

the battle Negative
give a backbone to the company Positive
leather pants Positive
the israeli/palestinian conflict as Negative
the story relevant in the first place Positive
from a television monitor Positive
loud, bang-the-drum Positive
a movie instead of an endless trailer Negative
a doctor’s office, emergency room, hospital bed or insurance company office Positive
this is more appetizing than a side dish of asparagus Negative

25


	1 Introduction
	2 Related works
	3 Methods
	3.1 Data relation
	3.2 Label error detection
	3.3 Outlier/OOD detection
	3.4 Data relation map

	4 Experimental results
	4.1 Label error detection
	4.1.1 Setting
	4.1.2 Results and analysis

	4.2 Outlier/OOD detection
	4.3 Ablation study

	5 Conclusion
	A Algorithm analysis
	A.1 Proof
	A.2 Empirical convergence analysis
	A.3 Computation time comparison
	A.4 Interpretation of relation function

	B Additional discussions
	C Experiment settings
	C.1 Implementation details
	C.2 Synthetic label noise
	C.3 Outlier detection

	D Additional experimental results
	D.1 Label error detection
	D.2 OOD detection
	D.3 Temporal model ensemble
	D.4 Compatibility term design
	D.5 Analysis on edge aggregation

	E Additional qualitative results
	E.1 Relation map
	E.2 Qualitative results


