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Abstract
Recent studies have demonstrated that gradient
matching-based dataset synthesis, or dataset con-
densation (DC), methods can achieve state-of-the-
art performance when applied to data-efficient
learning tasks. However, in this study, we prove
that the existing DC methods can perform worse
than the random selection method when task-
irrelevant information forms a significant part of
the training dataset. We attribute this to the lack
of participation of the contrastive signals between
the classes resulting from the class-wise gradient
matching strategy. To address this problem, we
propose Dataset Condensation with Contrastive
signals (DCC) by modifying the loss function to
enable the DC methods to effectively capture the
differences between classes. In addition, we an-
alyze the new loss function in terms of training
dynamics by tracking the kernel velocity. Further-
more, we introduce a bi-level warm-up strategy
to stabilize the optimization. Our experimental
results indicate that while the existing methods
are ineffective for fine-grained image classifica-
tion tasks, the proposed method can successfully
generate informative synthetic datasets for the
same tasks. Moreover, we demonstrate that the
proposed method outperforms the baselines even
on benchmark datasets such as SVHN, CIFAR-10,
and CIFAR-100. Finally, we demonstrate the high
applicability of the proposed method by applying
it to continual learning tasks.

1. Introduction
Deep neural networks (DNNs) are data hungry; larger
datasets make DNNs more generalizable (e.g., by data aug-
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Task-irrelevant features: {Wheels, Head lights, Roads, Trees, ...}

(a) Trailer  Truck (b) Police Van

Task-relevant features: {Logo, Police sign, Trailers, ...}

Figure 1: Example of a fine-grained Truck classification task
where the task-irrelevant common features are dominant and
the task-relevant discriminant features are in the minority.

mentation (Zhang et al., 2017; Yun et al., 2019; Lee et al.,
2021), or by collecting hyperscale training datasets (Jia et al.,
2021)). Unsurprisingly, gigantic datasets (e.g., 410 B lan-
guage tokens (Brown et al., 2020), 3.5B images (Mahajan
et al., 2018), and 1.8B image-text pairs (Jia et al., 2021))
have become central to the training of ground-breaking deep
models. However, such large datasets require tremendous
computational and infrastructural resources, not only for
training deep models but also for collecting and processing
data columns. Furthermore, real-world knowledge is increas-
ing exponentially, while machine learning (ML) systems are
prone to catastrophic forgetting (Goodfellow et al., 2013;
Rebuffi et al., 2017). This necessitates repeated training
using massive training samples to ensure that ML appli-
cations remain competent and practical. Thus, considering
the high computational costs, dataset reduction methods are
extremely beneficial in applied ML fields. Zhao et al. (2021)
proposed a dataset condensation method (DC) to synthesize
a small but informative dataset by matching the loss gradi-
ents with respect to the training and synthetic datasets. In
particular, DC was developed to be suitable for downstream
classification tasks by repeating the classifier training dur-
ing the synthetic data optimization procedure, resulting in
reasonable performances with reduced synthetic datasets.

In this study, however, we show that DC primarily focuses
on the class-wise gradient while overlooking contrastive
signals. Thus, DC underperforms even when compared with
the random selection baseline when contrastive signals are
significant to the task. For example, in fine-grained image
classification tasks, such as Truck categorization in Fig. 1,
contrastive signals should be considered to encode task-
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relevant information (e.g., logo, police sign, trailers) while
suppressing task-irrelevant information (e.g., wheels, head
lights, roads, trees). In our experiments on the fine-grained
Automobile dataset, DC results in a classifier with a test
accuracy (11%) lower than that achieved using the random
selection method (12.2%). We demonstrate that DC cannot
effectively utilize the contrastive signals of interclass sam-
ples using a motivating example and qualitative analysis.

To address this issue, we propose the Dataset Condensation
with Contrastive signals (DCC) method. This introduces a
modified gradient matching loss function that enables the
optimization of a synthetic dataset to capture the contrastive
signals. In contrast to DC, which employs only training data
of the same class when synthesizing images for a specific
class by the class-wise gradient matching, DCC matches
the sum of gradients over all classes with respect to the
synthetic and training datasets. Additionally, we analyze
our method in terms of training dynamics by tracking the
kernel velocity (Fort et al., 2020) and introduce a bi-level
warm-up strategy to stabilize the optimization procedure of
our method. In our experiments, we demonstrate that the
proposed DCC singularly outperforms DC in fine-grained
classification tasks and general benchmark datasets, such
as SVHN (Netzer et al., 2011), CIFAR-10, and CIFAR-
100 (Krizhevsky et al., 2009). Finally, we also demonstrate
the superiority of our method compared with baselines on
downstream tasks, where small synthetic datasets efficiently
reduce the total storage of data (e.g., continual learning).
The code of our study is available at: https://github.
com/Saehyung-Lee/DCC

2. Related Work
Formally, we define the dataset reduction problem as fol-
lows:

S⋆ = argmax
S

I(X ;S | τ). (1)

Here, X = {Xn}Nn=1 and S = {Sk}Kk=1 are the training
and reduced datasets, respectively, and K ≪ N . τ is a
task-dependent variable, and I(X ;S | τ) is the conditional
mutual information. Herein, we focus on classification tasks,
which is the most widely studied scenario with respect to
dataset reduction tasks (Wang et al., 2018; Zhao et al., 2021).

Selection-based methods. Selection-based methods
(Mirzasoleiman et al., 2020) find a data subset (coreset)
that satisfies the cardinality constraint (i.e., |S| = K) while
minimizing the difference between the loss gradient on
the training dataset and that on the coreset. Moreover,
recent studies (Jiang et al., 2021; Paul et al., 2021) have
demonstrated that a large fraction of training dataset can be
pruned based on the scores they provide. Jiang et al. (2021)
introduced a consistency score (C-score) that represents
the expected accuracy for a held-out sample on a training

dataset. By sorting the samples according to their C-scores,
we can identify prototypical (high-scoring) samples that
can serve as a proxy for the training dataset. Paul et al.
(2021) proposed the use of the expected loss gradient norm
(GradNd) or the norm of the error vector (EL2N) of each
training sample to prune a fraction of the training samples.
In our case, we preserve the most typical (low-scoring)
samples to obtain a proxy for the training dataset.

The selection-based methods, however, are ineffective, par-
ticularly when the task-conditional data information H(X |
τ) is evenly divided and distributed among the training sam-
ples. To be precise, if H(Xn | X \{Xn}, τ) = 1

NH(X | τ)
for all n ∈ {1, . . . , N}, then the mutual information
I(X ;S⋆ | τ) found by any selection-based method is al-
ways a small value K

NH(X | τ). As shown by Zhao et al.
(2021), the empirical performance gaps between the existing
data selection methods and random selection baselines are
of no significance in most realistic evaluation benchmarks.

Synthesis-based methods. Instead of selecting a subset
from the training dataset, a small dataset S that achieves
similar performance to X can be generated. Ideally, assum-
ing that the capacity of a synthetic datum can contain as
much information as 1

KH(X | τ), there exists an S that
achieves the same task performance as that attained through
the use of X . Wang et al. (2018) proposed dataset distilla-
tion (DD) to transfer the knowledge from a large dataset
to a small dataset. They demonstrated that it is possible to
achieve close to original accuracy on MNIST (LeCun, 1998)
using merely ten synthetic images. Inspired by DD, Zhao
et al. (2021) proposed a DC to synthesize a small set of
informative samples for learning downstream tasks. The au-
thors showed that the DC outperformed all the baselines in
their experiments. Recently, Nguyen et al. (2020) proposed
a meta-learning algorithm called Kernel Inducing Points
(KIP) for the dataset reduction problem. Furthermore, they
presented state-of-the-art performance by using infinitely
wide convolutional neural networks (Nguyen et al., 2021).

3. Method
In this section, we introduce the DC method (Zhao et al.,
2021) (Sec. 3.1), and study a motivating example showing
the limitation of the class-wise gradient matching strategy
employed by DC (Sec. 3.2). To mitigate this issue, we pro-
pose a modified gradient matching loss method (Sec. 3.3).
Furthermore, we propose a bi-level warm-up strategy to
stabilize the optimization of the proposed loss function.

3.1. Preliminary: DC with Gradient Matching

When generating images for class “c” (Sc), DC uses only
the training data of class “c” (X c). In particular, DC first (i)
updates a synthetic dataset S by applying a gradient descent
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step toward the minimization of the following loss L:

L =

C−1∑
c=0

D (∇θtL(X c; θt),∇θtL(Sc; θt)) , (2)

where C, D(·, ·) and L(·; ) denote the number of classes,
a distance function, and the cross-entropy loss function,
respectively, and ∇θtL(X c) is the average loss gradient
with respect to a model θt; (ii) before moving on to step
t + 1, trains the model on S; (iii) alternately optimizes
the synthetic dataset and the model; and (iv) randomly ini-
tializes the model after every pre-defined period T (i.e.,
{θiT | i ∈ N0} is a set of randomly initialized models).
Periodic model initialization plays an important role in en-
suring that S can be used for previously unseen models.
In addition, Zhao & Bilen (2021) improved DC by using
Differentiable Siamese Augmentation (DSA) to generate
more informative synthetic datasets. DSA transforms both
X c and Sc with the same random transformation (e.g., color
jittering, cropping, cutout, flipping, and scale) at each train-
ing step. Except for the transformation part, the DSA and
DC methods are identical. That is, DSA also uses class-wise
gradient matching loss and periodic model initialization.

3.2. A Motivating Example

In this subsection, we show an example, in which the class-
wise gradient matching strategy (employed by DC) is prob-
lematic. In particular, we show that the class-wise gradi-
ent matching strategy is dominated by task-irrelevant class-
common features, whereas the class-discriminative features
are relatively neglected. Fig. 2 presents an overview.
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Figure 2: Overview of Sec. 3.2. Red and blue circles denote
the data distributions of y = +1 and −1, respectively.

Setup. We define a binary classification dataset X =
{(xn, yn)}Nn=1 sampled from the following distribution:

y
u.a.r∼ {−1,+1}, x

i.i.d.∼ N (yαϕ1 + βϕ2, 1). (3)

Here, ϕ1 ∈ R2 and ϕ2 ∈ R2 represent class-discriminative
and class-common feature basis vectors, respectively, where
ϕ⊤
1 ϕ2 = 0 and ∥ϕ1∥ = ∥ϕ2∥ = 1. α and β denote the

strength of the class-discriminative and class-common fea-
tures, respectively, where α ≥ 1 and β ≥ 0. We generate
a reduced dataset S = {S+,S−} of X , where S+ and
S− are (s1,+1) and (s2,−1), respectively. We use a lin-
ear classifier f(x) = sign(w⊤x) and the hinge loss func-
tion L(x, y;w) = max

(
0, 1− yw⊤x

)
, where w = ϕ1. For

convenience of description, we define X+ = {(xi, yi) |
i ∈ {1, · · · , N},−yiw⊤xi < 1, yi = +1} and X− =
{(xj , yj) | j ∈ {1, · · · , N},−yjw⊤xj < 1, yj = −1}.
We define a ℓ2-distance-based gradient matching loss as
follows (X : the training dataset, S: the synthetic dataset):

L(X ,S;w) = λ

|S|
∑
s∈S
∥s∥

+

∥∥∥∥∥∥ 1

|X |
∑

(x,y)∈X

gw(x, y)−
1

|S|
∑

(s,t)∈S

gw(s, t)

∥∥∥∥∥∥ ,
(4)

where gw(·) = ∇wL(·;w). In our example, λ ∈ R+ is a
control parameter of the capacity of the synthetic dataset S .
Here, we assume that λ is selected by making maxs∈S ∥s∥
upper bounded by ϵ ≤ 1−

√
2√
π

. Finally, we define a class-
discriminative and class-common feature ratio R(S) to eval-
uate the quality of the generated S as follows:

R(S) = 1

|S|
∑
s∈S

∣∣s⊤ϕ1

∣∣
|s⊤ϕ1|+ |s⊤ϕ2|

, (5)

where, R(S) = 1 indicates that S contains only class-
discriminative features, whereas R(S) = 0 indicates that S
holds only class-common features.

Issues with class-wise gradient matching. The optimal
solution of Eq. (4) for the class-wise gradient matching
strategy, employed by previous DC approaches (Zhao et al.,
2021; Zhao & Bilen, 2021) is as the follows:

S̃ = argmin
S

L(X+,S+) + L(X−,S−)

= argmin
S

∥∥µ+ − s1
∥∥+ ∥∥µ− − s2

∥∥+ λS

=

{(
ϵµ+

∥µ+∥
,+1

)
,

(
ϵµ−

∥µ−∥
,−1

)}
,

(6)

where µ+ = 1
|X+|

∑
x∈X+ x, µ− = 1

|X−|
∑

x∈X− x, and
λS = λ

∑
s∈S ∥s∥. More detailed equations can be found

in Appendix B. Equation (6) demonstrates that the class-
wise gradient matching method optimizes S for each class
to ensure that it has the same direction as the average of the
training samples that generate gradients. Then, R(S̃) is:

R
(
S̃
)
≤ α

α+ β
. (7)
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The equality holds when β = 0, and the inequality is due
to
∣∣∣ϕ⊤

1 µ+

∥µ+∥

∣∣∣ = ∣∣∣ϕ⊤
1 µ−

∥µ−∥

∣∣∣ < α. Equation (7) shows that when
α≪ β (i.e., class-common features are dominant and class-
discriminative features are minority), R(S̃)→ 0, that is, the
class-wise gradient matching method can result in synthetic
datasets that are ineffective for the classification task. For ex-
ample, as shown in Table 1, the class-wise gradient matching
method can fail when applied to fine-grained classification
tasks that include shared appearance between classes and
can be discriminated only by fine-grained appearances.

Leveraging contrastive signals. The class-wise gradient
matching method has a limitation when class-common fea-
tures are dominant. We need a different approach to capture
only class-discriminative features for better downstream
task performance. The following simple modification of Eq.
(6) can mitigate this issue:

Ŝ = argmin
S

L(X+ ∪ X−,S+ ∪ S−)

= argmin
S

∥∥(µ+ − µ−)− (s1 − s2)
∥∥+ λS

= {(ϵϕ1,+1) , (−ϵϕ1,−1)} .

(8)

Equation (8) considers the loss gradients for all classes
collectively, whereas Eq. (6) considers the loss gradients
for each class separately. Moreover, Eq. (8) reveals that the
sum of loss gradients between classes is important because
it contains contrastive signals between classes ((µ+ − µ−)
and (s1 − s2)). Here, R(Ŝ) is calculated as follows:

R
(
Ŝ
)
= 1. (9)

In other words, Ŝ contains only class-discriminative features
to ensure that it is independent of the proportion of class-
common features in the original training dataset X .

Empirical evidence. Here, we empirically demonstrate
that the arguments developed above, based on a simple
theoretical model, can also be applied to modern machine
learning settings. To be specific, we (i) define a binary classi-
fication task (3 vs. 8) using MNIST; (ii) train a convolutional
neural network (CNN) model on the binary task using the
cross-entropy loss; (iii) generate reduced datasets of the
task (3 vs. 8) by applying the class-wise gradient match-
ing method (DC) and the class-collective gradient matching
method (Eq. (10)), respectively; and (iv) horizontally flip
all training images from the class “3” and repeat (ii) to (iii).
Digits “3” and “8” can be easily classified by the difference
in shape on the left halves (discriminative features), while
the right halves look almost identical (common features).

Figure 3 illustrates images synthesized by the DC and our
proposed method. The figure shows that the class-wise gra-
dient matching method generates near-prototype images for

(a) 3 vs. 8, class-wise gradient matching.

(b) 3 vs. 8, class-collective gradient matching (ours).

(c) Flipped 3 vs. 8, class-collective gradient matching (ours).

Figure 3: Generated images (10 images per class) for each
setting (shown below each subfigure). We mark the images
we want to emphasize with red boxes.

each class. In contrast, the class-collective gradient match-
ing method optimizes synthetic images by prioritizing the
difference between the two classes. For example, the red
boxes in Fig. 3b show that our class-collective gradient
matching method synthesizes the images of class “8” with
an emphasis on the left half. The same trend can be found in
Fig. 3c, indicating that the results are not due to chance or
dataset bias, but because the class-collective method lever-
ages contrastive signals. For simple tasks such as MNIST,
however, our motivation may not lead to improvements com-
pared to DC, because the number of features in the training
dataset is limited to ensure the efficiency of the condensation
method. However, for complex tasks that need to capture
subtle differences between classes, our approach can result
in significant improvements in dataset condensation.

3.3. Dataset Condensation with Contrastive Signals

Based on Sec. 3.2, we propose Dataset Condensation with
Contrastive signals (DCC). The DCC optimizes a synthetic
dataset by minimizing the following objective function:

E
θ0∼Pθ0

[
T−1∑
t=0

D

(
C−1∑
c=0

gθt(X c),

C−1∑
c=0

gθt(Sc)

)]
,

subject to θt+1 = θt −
η

|S|
∑

(s,t)∈S

∇θtL(s, t; θt).

(10)

Here, gθt(X c) = 1
|X c|

∑
(x,y)∈X c ∇θtL(x, y; θt), where

X c = {(x, y) | (x, y) ∈ X , y = c}. D(·, ·) and L(·; )
denote the distance function and cross-entropy loss function,
respectively. We find the solution to Eq. (10) by alternately
training the network parameters θt and synthetic dataset S,
with the periodic initialization of the classifier as in DC.
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We name the loops initializing θ and updating S “outer-
loop” and “inner-loop,” respectively. The primary difference
between Eq. (10) and the objective functions of existing
methods (Eq. (2)) are the locations of the summation over
classes

∑C−1
c=0 . Existing methods first determine the gradi-

ent distance for each class and then sum them up, while
DCC sums up the gradients over the classes first and then
measures the gradient distance between the training and
synthetic datasets. Therefore, as implied in Sec. 3.2, DCC
can effectively leverage the contrastive signals present in
the sum of loss gradients over classes, thereby synthesizing
small datasets that are more suitable for classification tasks.
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Figure 4: NTK velocity during the synthetic dataset opti-
mization using DC and DCC on CIFAR-10.

A bi-level warm-up strategy. DNNs are known to un-
dergo chaotic transience during the early phase of training
(Fort et al., 2020; Liu et al., 2020). In addition, during the
dataset condensation process, the classifier is periodically
initialized, as described in Sec. 3.1, thereby repeatedly in-
ducing the chaotic training phase of the classifier. We ana-
lyze the impact of this periodic transience on the training
dynamics of the DCC by measuring the Neural Tangent
Kernel (NTK) velocity (Fort et al., 2020) on the synthetic
dataset. Fort et al. (2020) introduced the NTK velocity to
characterize the loss landscape geometry and training dy-
namics of DNNs. The NTK velocity is the time evolution
of the data-dependent NTK, which, in our case, is the Gram
matrix of the Jacobian of the gradient matching loss with
respect to the synthetic data samples. The high NTK veloc-
ity indicates that the loss landscape is highly nonlinear, and
thus, the update direction of the synthetic dataset changes
rapidly.

Figure 4 shows the NTK velocity during synthetic dataset
optimization using DC and DCC on CIFAR-10. As shown,
the NTK velocity periodically repeats the process of peak-

Algorithm 1 Dataset condensation with contrastive signals

Require: Training datset X , synthetic dataset S,
outer/inner-loop iterations Ko,Ki, network training
iterations T , outer/inner-loop level warm-up iterations
γo, γi, learning rate for synthetic images and network
τ , η, number of images per class ζ

1: Initialize S with a subset of X s.t. |Sc| = ζ, ∀ class c
2: for ko = 0 to Ko − 1 do # outer-loop
3: Initialize the network parameter θ
4: warmup, ki← True, 0
5: while warmup do # inner-loop with warm-up
6: if ko > γo or ki > γi then # bi-level warm-up
7: break;
8: end if
9: # class-wise gradient matching loss

10: Compute L by Eq. (2)
11: S ← S − τ · ∇SL # synthetic images update
12: Update θ using S for T iterations
13: ki ← ki + 1
14: end while
15: gX , gS ← 0, 0
16: while ki < Ki do # inner-loop without warm-up
17: for c = 0 to C − 1 do
18: Sample a minibatch pair X̄ c ∼ X and S̄c ∼ S
19: gX , gS ← gX + gθ(X̄ c), gS + gθ(S̄c)
20: end for
21: # class-collective gradient matching loss
22: L ← D(gX , gS)
23: S ← S − τ · ∇SL # synthetic images update
24: Update θ using S for T iterations
25: ki ← ki + 1
26: end while
27: end for
28: Output: a synthetic dataset S

ing at the classifier initialization and then rapidly stabilizes.
Moreover, the peaks of DCC are much higher than those
of DC. This difference is reasonable, because when synthe-
sizing images with the class label “c,” DC obtains the loss
gradient using only the training data of the class “c,” while
DCC obtains the loss gradient from all the classes. Thus,
noisy gradients from the other classes can be excluded in
DC, whereas DCC may accumulate noisy gradients from
all the classes. Although the higher peaks are not detrimen-
tal in terms of optimization (Jastrzebski et al., 2020; Fort
et al., 2020), we empirically determine that the peaks during
the early phase of dataset condensation can suppress the
effectiveness of DCC (see Table 4).

To address this issue, we introduce a bi-level warm-up strat-
egy for the DCC. We define the inner-loop level (updating
S) and outer-loop level (initializing θ) warm-up and apply
class-wise gradient matching under the two warm-up con-
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ditions. The overall procedure for the proposed method is
described in Algorithm 1.

4. Experimental Results and Discussion
4.1. Experimental Setup

Datasets. We complement our analysis with experiments
conducted on SVHN, CIFAR-10, CIFAR-100, and the fine-
grained image classification datasets (Automobile, Terrier,
Fish, Truck, Insect, and Lizard) subsampled from Ima-
geNet32x32 (Chrabaszcz et al., 2017) using the WordNet hi-
erarchy (Miller, 1998). A detailed description of the datasets
is summarized in Appendix D.

Implementation Details. In our experiments, we com-
pare the proposed method with the baseline methods for the
settings of learning 1, 10, and 50 image(s) per class as in
Zhao et al. (2021). We use ConvNet (Gidaris & Komodakis,
2018) as a classifier from which the gradients for matching
are obtained in the dataset condensation process. We set
Ko = 1000, γo = 250, γi = 10, and τ = 0.1. For settings
of learning 1, 10, and 50 image(s) per class, (Ki, T ) is set
to (10,5), (10,50), and (50,10), respectively. To reduce the
training data based on the selection-based methods, we use
the pre-computed scores provided by Jiang et al. (2021)
(C-scores) and the average of the scores computed for 10
independently pre-trained models (GraNd and EL2N). To
evaluate the selection-based methods, we train 100 classi-
fiers on the coreset from scratch and obtain the mean and
standard deviation of their test accuracies. In addition, to
evaluate the synthesis-based methods, including our pro-
posed method, we learn five synthetic datasets and train
20 classifiers from scratch on each synthetic dataset to ob-
tain the mean and standard deviation of 100 test accuracies.
Please refer to (Zhao et al., 2021; Zhao & Bilen, 2021) for
more details. For the implementation of KIP (Nguyen et al.,
2020), we use the code1 provided by the authors. Note that
we denote the DCC with differentiable Siamese augmenta-
tion (Zhao & Bilen, 2021) as DSAC.

4.2. Dataset Condensation

Results on Fine-Grained Datasets. We first evaluate the
improvements over the baselines of the proposed method on
fine-grained image classification datasets. Tab. 1 shows that
the results of DC are consistent with those of the motivation
example described in Sec. 3.2. In particular, DC perform
worse than random selection (Random) on the Automo-
bile, Terrier, and Fish datasets. In contrast, DCC always
performs better than Random, implying that the proposed

1https://colab.research.google.com/
github/google-research/google-research/
blob/master/kip/KIP.ipynb

Table 1: Comparison of the proposed method with the base-
lines (Random, DC and DSA) on fine-grained image clas-
sification datasets. Each number is the average over 100
different runs. The blue and red numbers denote worse than
Random and the best results, respectively.

Dataset Img/cls Random Baselines Ours
DC DSA DCC DSAC

Automobile 10 12.2 11.0 19.1 18.6 22.1
50 19.5 16.8 24.1 28.3 29.2

Terrier 10 5.6 4.6 5.1 6.4 6.2
50 7.8 4.8 7.2 10.7 10.7

Fish 10 14.7 13.5 18.7 20.4 22.3
50 15.3 17.0 19.4 28.4 23.3

Lizard 10 13.3 23.5 29.1 30.0 34.2
50 20.9 32.6 32.9 38.8 34.8

Truck 10 21.2 24.8 36.5 39.4 48.1
50 31.8 43.5 57.9 57.4 60.6

Insect 10 27.6 41.8 47.4 48.7 50.0
50 42.7 49.6 51.3 55.8 51.9

(a) DC (b) DCC

Figure 5: Visualization of the generated 10 images per class
of Automobile. From the top row, “ambulance”, “beach
wagon”, “cab”, “convertible”, “jeep”, “limousine”, “Model
T”, “racer”, and “sports car”.

method effectively considers the class-discriminative fea-
tures. Moreover, DSAC always outperforms DSA, showing
that improved methods using diverse image transformations
do not effectively detect differences between classes. In ad-
dition, although the proposed method is largely orthogonal
to differentiable Siamese augmentation, it can be observed
that DCC is more effective than DSAC in certain cases. Con-
sidering image transformations as a form of regularization
(Hernández-Garcı́a & König, 2018), we hypothesize that
such cases indicate that applying additional regularization
may hinder the optimization process of the proposed method.
Finally, we qualitatively compare the synthetic images for
the classes of Automobile generated through each method of
DCC and DC. Figure 5 shows that the images learned by the
proposed method are sharper than those learned by DC and
display the unique patterns of each class more prominently.

https://colab.research.google.com/github/google-research/google-research/blob/master/kip/KIP.ipynb
https://colab.research.google.com/github/google-research/google-research/blob/master/kip/KIP.ipynb
https://colab.research.google.com/github/google-research/google-research/blob/master/kip/KIP.ipynb


Dataset Condensation With Contrastive Signals

Table 2: Comparison of the performance (mean±std %) of the proposed method with the selection-based (Random, C-score,
GraNd, and EL2N) and sysnthesis-based (KIP, DC, and DSA) methods on benchmark datasets. Img/cls stands for the
number of images per class, and Ω denotes the upper bound of the performance, which can be obtained by learning the
original training dataset. The best results within each setting (Dataset, Img/cls) are indicated in bold.

Dataset Img/cls Selection-based Synthesis-based Ours
ΩRandom C-score GraNd EL2N KIP DC DSA DCC DSAC

SVHN
1 14.6±1.6 - 19.6±0.5 19.1±0.6 23.3±2.7 34.6±2.0 36.0±2.0 34.3±1.6 47.5±2.6

92.1±0.210 35.1±4.1 - 37.5±1.6 32.5±1.2 62.4±0.5 76.2±0.6 78.9±0.5 76.2±0.8 80.5±0.6
50 70.9±0.9 - 69.1±0.7 68.7±0.7 69.6±0.5 82.7±0.3 84.4±0.4 83.3±0.2 87.2±0.3

CIFAR-10
1 14.4±2.0 21.7±0.6 21.8±0.5 20.9±0.6 37.6±1.0 28.2±0.7 28.7±0.7 32.9±0.8 34.0±0.7

81.6±0.310 26.0±1.2 31.6±0.4 32.3±0.4 32.3±0.4 47.3±0.3 44.7±0.6 52.1±0.6 49.4±0.5 54.5±0.5
50 43.4±1.0 39.8±0.4 41.2±0.3 40.7±0.3 50.1±0.2 54.8±0.5 60.6±0.4 61.6±0.4 64.2±0.4

CIFAR-100
1 4.2±0.3 8.0±0.3 8.8±0.3 8.8±0.3 14.8±1.2 12.8±0.3 13.9±0.4 13.3±0.3 14.6±0.3

52.5±0.310 14.6±0.5 18.1±0.2 17.8±0.2 17.3±0.2 13.4±0.2 26.6±0.3 32.4±0.3 30.6±0.4 33.5±0.3
50 29.7±0.4 30.4±0.3 27.6±0.2 27.7±0.2 - 32.1±0.3 38.6±0.3 40.0±0.3 39.3±0.4

For example, the long body and multiple windows of the
“limousine” or the distinctive body frame of “Model T” are
clearly exhibited in the results of DCC (red box in Fig. 5),
while the differences between the classes are ambiguous
and difficult to distinguish in the results of DC.
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Figure 6: Alignment and uniformity loss for the features of
synthetic images generated by DC and DCC on CIFAR-10
(50 images per class). We used 6 pre-trained networks and
10 synthetic datasets (5 DC + 5 DCC), which result in total
60 points in this plot.

Results on Benchmark Datasets. Table 2 presents the
comparison results of selection-based methods, synthesis-
based methods, and our methods on SVHN, CIFAR-10 and
CIFAR-100. First, in contrast to the observation by Zhao
et al. (2021), recent selection-based methods achieve better
results than Random for the settings of 1 and 10 image(s)
per class. However, their performance is still worse than that
of the synthesis-based methods with large gaps. Although
KIP performs well in some settings, it can be observed that

its effectiveness is unstable depending on the dataset or
Img/cls. Unlike fine-grained classification tasks, DC and
DSA always show improvements compared to Random and
the selection-based methods with large gaps (e.g., +15% in
SVHN). Nevertheless, we observe that our method achieves
the best performance not only for fine-grained tasks, but
also for general vision classification benchmarks.

To understand the significant improvements achieved by our
method, we provide an additional analysis of our method
and DC from the perspective of representation learning.
Wang & Isola (2020) recently demonstrated that two metrics,
i.e., uniformity (how features are uniformly distributed on
the feature space) and alignment (how two features with the
same class are close) are highly correlated to the quality of
the learned representations. Following Wang & Isola (2020),
we plot the uniformity and alignment losses for the features
of DC and DCC in Fig. 6. We extract the features using
ResNet-18 (He et al., 2016) and VGG-11 (Simonyan &
Zisserman, 2014), which are pre-trained on CIFAR-10. In
the figure, DCC shows lower uniformity loss (i.e., samples
are more uniformly distributed) and lower alignment loss
(i.e., positive samples are closer) than DC. That is, as in our
observations, DCC can capture task-relevant features that
help classification tasks by using contrastive signals.

Cross-Architecture Generalization. We test the gener-
alizability of the synthetic dataset learned through the the
proposed method. In particular, we train various CNN ar-
chitectures, including ConvNet, LeNet (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012), VGG-11, and ResNet-18,
on small datasets created using Random, DC, DSA, DCC,
and DSAC and list their mean test accuracy in Tab. 3. As
shown, our proposed method achieves improved results not
only for the architecture used for condensation, but also for
other CNN architectures tested.
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Table 3: Comparison of the cross-architecture generalization
performance (the mean test accuracy over 100 runs) of the
proposed method with the baseline methods using ConvNet
as the source network on CIFAR-10 (50 images per class).
The best results for each target network are shown in bold.

Method Target network
ConvNet LeNet AlexNet VGG ResNet

Random 43.2 30.8 35.9 36.8 26.1
DC 54.8 33.8 40.9 39.3 23.9

DSA 60.4 40.3 46.0 50.7 49.7
DCC (ours) 61.6 38.0 45.2 46.3 27.3

DSAC (ours) 64.1 42.6 48.2 56.0 53.9

Table 4: Improvement in the effectiveness (the mean of test
accuracies over 100 runs) of the proposed method on the
CIFAR datasets following the application of the bi-level
warm-up strategy.

Dataset Method Bi-level warm-up Img/cls
1 10 50

CIFAR-10
DCC ✗ 28.3 49.2 61.3

✓ 32.9 49.4 61.6

DSAC ✗ 32.3 54.0 63.9
✓ 34.0 54.5 64.2

CIFAR-100
DCC ✗ 12.0 28.5 40.5

✓ 13.3 30.6 40.0

DSAC ✗ 12.9 29.3 37.8
✓ 14.6 33.5 39.3

Ablation Study. We demonstrate the importance of the bi-
level warm-up strategy when applying the proposed method.
We compare the performance of the proposed method with
and without the bi-level warm-up strategy and present the
results in Tab. 4. In the table, ✗ is equivalent to Algorithm 1
where γo = 0 and γi = 0, while ✓ indicates γo = 250
and γi = 10. From the results, it can be seen that when
the capacity of the synthetic dataset is relatively large, the
bi-level warm-up has a negligible effect, whereas when the
budget is limited, the bi-level warm-up affects significant
performance improvements. In particular, without the bi-
level warm-up strategy, DCC yields worse results than the
baseline methods (DC and DSA) for settings of learning 1
and 10 images per class of CIFAR-100, highlighting the im-
portance of the bi-level warm-up strategy for small budgets.
In addition, Tab. 5 shows the ablation study on designing
warm-up: None (no warm-up), Simple (warm-up depen-
dent only on inner-loops), Proposed (bi-level). As shown,
the NTK velocity peaks during the later phase of dataset
condensation do not suppress the effectiveness of DCC.

Table 5: The results of ablation study on designing warm-up

Dataset Method Img/cls None Simple Proposed

CIFAR-100
DCC 1 11.98 13.01 13.27

10 28.46 29.74 30.59

DSAC 1 12.91 14.21 14.57
10 29.27 31.97 33.47
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Figure 7: Performance improvements (average accuracy %)
on the continual learning task for a sequence of three fined-
grained image datasets {Lizard-Truck-Insect} following the
application of the proposed method.

4.3. Application: Continual Learning

We apply our method to a continual learning task, where
the training datasets are sequentially input with task labels.
We build our method on a popular memory-based contin-
ual learning baseline, called Experience Replay with Ring
Buffer strategy (ER-RB) (Chaudhry et al., 2019). This base-
line randomly stores the same amount of data per class of
old tasks and replays them to avoid forgetting old tasks
while learning a new task. To observe the effectiveness of
the applications of the dataset condensation methods on con-
tinual learning tasks, we substitute DSA and DSAC for the
ring buffer strategy. We train models on a sequence of three
fine-grained image datasets (i.e., {Lizard-Truck-Insect})
with the ER-RB, DSA, and DSAC methods (10 images per
class) and compare them in terms of the average accuracy
of seen tasks in Figure 7. As shown, DSAC outperforms
RB and DSA by 6.7% and 2.5% in T3, respectively. These
results indicate that the dataset generated by DSAC is more
informative than those created by other baselines and hence
more helpful in preventing memory loss of past tasks. We
provide the results of the continual learning task on general
vision classification benchmarks in Appendix C.
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5. Conclusion and Future Directions
In this study, we demonstrate that the existing dataset con-
densation methods perform poorly on fine-grained tasks
owing to their bias toward reconstructing the prototype of
each class. Based on the example providing the motivation
for the study, we propose the DCC method, which can ef-
fectively capture subtle differences between classes through
the application of class-collective gradient matching. In ad-
dition, inspired by the training dynamics of the DCC, we
introduce a bi-level warm-up strategy that can stabilize the
optimization of the proposed loss function. Our experiments
demonstrate that the proposed method significantly outper-
forms the baselines not only for fine-grained tasks, but also
for general vision classification benchmarks. However, the
proposed method can be further improved by optimizing the
the strategy used to avoid learning instability. To be precise,
the DCC involves contrastive signals from all classes in-
cluded in a training dataset. Therefore, for a large number of
classes, the bi-level warm-up strategy might not be sufficient
to control the enormous contrastive signals. Methods such
as class subgrouping could remedy this, which will be our
focus in future studies. In addition, the proposed method
provides potential for further development of dataset con-
densation by enabling a combination with mixed-class data
augmentation methods such as Mixup or CutMix.
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A. A Motivating Example
An issue with class-wise gradient matching. The class-wise gradient matching strategy is employed by previous DC
approaches (Zhao et al., 2021; Zhao & Bilen, 2021). The optimal solution S̃ of the class-wise gradient matching strategy for
Eq. (4) can be found as follows:

S̃ = argmin
S

L(X+,S+) + L(X−,S−) = argmin
S

∥∥∥∥∥∥ 1

|X+|
∑

(x,y)∈X+

gw(x, y)−
1

|S+|
∑

(s,t)∈S+

gw(s, t)

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1

|X−|
∑

(x,y)∈X−

gw(x, y)−
1

|S−|
∑
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gw(s, t)

∥∥∥∥∥∥+ λ

|S+|
∑
s∈S+

∥s∥+ λ

|S−|
∑
s∈S−

∥s∥

= argmin
S

∥∥∥∥∥∥
∑

(x,y)∈X+

−x
|X+|

+
∑

(s,t)∈S+

s

|S+|

∥∥∥∥∥∥+
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∑
(x,y)∈X−

x

|X−|
−

∑
(s,t)∈S−

s

|S−|

∥∥∥∥∥∥+ λS

= argmin
S

∥∥µ+ − s1
∥∥+ ∥∥µ− − s2

∥∥+ λS =

{(
ϵµ+

∥µ+∥
,+1

)
,

(
ϵµ−

∥µ−∥
,−1

)}
,

(6)

where µ+ = 1
|X+|

∑
x∈X+ x, µ− = 1

|X−|
∑

x∈X− x, and λS = λ
∑

s∈S ∥s∥. Eq (6) demonstrates that the class-wise
gradient matching method optimizes S, for each class, to have the same direction as the average of training samples that
generate gradients. Then, R(S̃) is as follows:

R
(
S̃
)
=

1

2
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∣∣∣+ β
≤ α

α+ β
. (7)

Here, without loss of generality, we assume the cardinality of X is sufficiently large such that
∣∣∣ϕ⊤

1 µ+

∥µ+∥

∣∣∣ = ∣∣∣ϕ⊤
1 µ−

∥µ−∥

∣∣∣. The

equality holds when β = 0, and the inequality is due to
∣∣∣ϕ⊤

1 µ+

∥µ+∥

∣∣∣ < α. Eq. (7) shows that when α ≪ β (i.e., when

class-common features are dominant features and class-discriminative features are minority), R(S̃)→ 0, i.e., the class-wise
gradient matching method can result in synthetic datasets that are ineffectual for the classification task. For example, as
shown in Table 1, the class-wise gradient matching method can fail on fine-grained classification tasks that include shared
appearance between classes, and can be discriminative by only fine-grained appearances.

Leveraging contrastive signals. The class-wise gradient matching method has a limitation when the class-common
features are dominant. We need a different approach to capture only class-discriminative features for better target task
performances. The following simple modification of Eq. (6) can mitigate the issue:

Ŝ = argmin
S

L(X+ ∪ X−,S+ ∪ S−)

= argmin
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(8)

In Eq. (3), we can see that X is balanced (y u.a.r∼ {−1,+1}). Hence, we can set |X+| = |X−| = N̂ , without loss of
generality. Eq. (8) considers loss gradients for all classes collectively, while Eq. (6) considers loss gradients for each
class separately. Moreover, Eq. (8) reveals that the sum of loss gradients between classes is important because it contains
contrastive signals between classes ((µ+ − µ−) and (s1 − s2)). Here, R(Ŝ) is as follows:

R
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Ŝ
)
=

1

2

(
2ϵ|ϕ⊤

1 ϕ1|
ϵ|ϕ⊤

1 ϕ1|+ ϵ|ϕ⊤
1 ϕ2|
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= 1, (9)
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Figure 8: Performance improvements (average accuracy %) on the continual learning task for a sequence of benchmark
datasets {CIFAR10-SVHN-TrafficSigns} following the application of the proposed method.

in other words, Ŝ contains only class-discriminative features, so that it is independent of the proportion of class-common
features in the original training dataset X .

B. Application: Continual Learning
Figure 8 shows the effectiveness of DSAC, DSA and RB on the continual learning task which is composed of CIFAR10,
SVHN and TrafficSigns (Stallkamp et al., 2011). DSAC and DSA utilize the condensed datasets as rehearsal examples as in
Figure 7. We note that our DSAC again dominates other baselines for T2 and T3 tasks.

C. Datasets
SVHN (Netzer et al., 2011) consists of 73,257 training images and 26,032 test images in 10 classes. CIFAR-10 (Krizhevsky
et al., 2009) consists of 50,000 training images and 10,000 test images in 10 classes. CIFAR-100 (Krizhevsky et al.,
2009) consists of 50,000 training images and 10,000 test images in 100 classes. SVHN, CIFAR-10, and CIFAR-100
images have sizes of 32 × 32 pixels. ImageNet (Deng et al., 2009) consists of 1,281,167 training images and 100,000
test images in 1,000 classes. Chrabaszcz et al. (2017) provided downsampled variants of the ImageNet dataset. The
ImageNet32x32 dataset (Chrabaszcz et al., 2017) have the same number of classes and images as ImageNet, but the images
are downsampled to sizes of 32×32 pixel. We constructed the fine-grained image classification datasets by subsampling from
the ImageNet32x32 dataset using the WordNet (Miller, 1998) hierarchy. The subsampled ImageNet classes are summarized
in Tab. 6.
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Table 6: The subsampled ImageNet classes for each fine-grained image classification dataset.

Fine-grained dataset ImageNet classes

Automobile beach wagon, convertible, sports car, ambulance, jeep, limousine, racer, cab, Model T

Terrier Lakeland terrier, Scotch terrier, cairn, Airedale, Tibetan terrier, Yorkshire terrier, Norfolk terrier,
Staffordshire bullterrier, Sealyham terrier, standard schnauzer, Norwich terrier, Bedlington terrier, Lhasa,
Irish terrier, silky terrier, Dandie Dinmont, Boston bull, Border terrier,soft-coated wheaten terrier,
Australian terrier, American Staffordshire terrier, West Highland white terrier, giant schnauzer,
miniature schnauzer, Kerry blue terrier, wire-haired fox terrier

Fish tench, stingray, tiger shark, barracouta, coho, gar, electric ray, great white shark, sturgeon
puffer, anemone fish, goldfish, eel, rock beauty, lionfish, hammerhead

Lizard agama, banded gecko, Komodo dragon, frilled lizard, African chameleon, American chameleon,
green lizard, whiptail, common iguana, alligator lizard, Gila monster

Truck pickup, police van, trailer truck, minivan, moving van, tow truck, fire engine, garbage truck, tractor

Insect cricket, ant, leafhopper, walking stick, grasshopper, dung beetle, tiger beetle, lacewing,
rhinoceros beetle, ringlet, long-horned beetle, ladybug, ground beetle, cicada, cabbage butterfly,
leaf beetle, lycaenid, bee, monarch, damselfly, admiral, sulphur butterfly, dragonfly, fly, weevil,
cockroach, mantis


