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Abstract

The problem of class imbalanced data lies in that the
generalization performance of the classifier is deteriorated
due to the lack of data of the minority classes. In this pa-
per, we propose a novel minority over-sampling method
to augment diversified minority samples by leveraging the
rich context of the majority classes as background im-
ages. To diversify the minority samples, our key idea is to
paste a foreground patch from a minority class to a back-
ground image from a majority class having affluent con-
texts. Our method is simple and can be easily combined
with the existing long-tailed recognition methods. We em-
pirically prove the effectiveness of the proposed oversam-
pling method through extensive experiments and ablation
studies. Without any architectural changes or complex al-
gorithms, our method achieves state-of-the-art performance
on various long-tailed classification benchmarks. Our code
will be publicly available at link.

1. Introduction
Real-world data are likely to be inherently imbal-

anced [11, 18, 26, 27]. If models are trained on such an
imbalanced dataset, they would be biased toward majority
classes and tend to have poor generalization ability on rec-
ognizing minority classes (i.e., overfitting).

A simple and straightforward method to overcome the
class imbalance problem is to repeatedly oversample the
minority classes [6,41]. However, these naive oversampling
may rather intensify the overfitting problem since the re-
peatedly selected samples have less diversity with almost
similar image contexts [36]. For example, consider a mi-
nority class of ‘Snow goose’ where the geese always stand
upon grasses in the training images. If samples are drawn
from these limited training samples [41] or even if new sam-
ples are produced by interpolating within the class [6], only
context-limited images will be created as in Figure 1. Our
goal is to solve the aforementioned problem by introducing
a simple context-rich oversampling method.

*Works done while doing an internship at NAVER AI Lab.
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Figure 1. Concept of context-rich minority oversampling. In the
real-world long-tailed dataset iNaturalist 2018 [18], the number
of samples from head class and tail class is extremely different.
Naive random oversampling method repeatedly produces context-
limited images from minority classes. We propose a novel context-
rich oversampling method to generate diversified minority images.
Our key idea is to bring rich contexts from majority samples to
minority samples.

We pay attention to the characteristics of long-tailed dis-
tributions; that is, majority class samples are data-rich and
information-rich. Unlike the existing re-sampling methods
that ignore (i.e., undersample) majority samples, we use
the affluent information of the majority samples to gener-
ate new minority samples. Specifically, our idea is to lever-
age the rich major-class images as the background for the
newly created minor-class images. Figure 1 illustrates the
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concept of our proposed context-rich oversampling strategy.
Given an original image from a minority class, the object
is cropped in various sizes and pasted to the various im-
ages from majority classes. Then, we can create images with
more diverse contexts (e.g., ‘Snow goose’ images with the
sky, road, roof, crows, etc). Since this is an interpolation of
the majority and minority class samples, it generates diver-
sified data around the decision boundary, and as a result, it
improves generalization performance for minority classes.

To this end, we adopt an image-mixing data augmenta-
tion, CutMix [46]. Reminding our key idea is transferring
rich contexts from majority to minority samples, we pro-
pose a simple and effective data sampling strategy to gen-
erate new minority-centric images with majority’s contexts.
However, naive use of CutMix may exacerbate the overfit-
ting problem towards majority classes since it may gener-
ate more majority-centric samples than minority samples.
We solve this problem by sampling the background images
and the foreground patches from different distributions to
achieve the desired minority oversampling.

Our key contributions can be summarized as follows:
(1) We propose a novel context-rich minority oversampling
that generates various samples by leveraging the rich con-
text of the majority classes as background images. (2) Our
method requires little additional training cost and can be
easily integrated into various end-to-end deep learning algo-
rithms for long-tailed recognition. (3) We show that signifi-
cant performance improvements can be achieved by apply-
ing the proposed oversampling to existing commonly used
loss functions without any architectural changes or complex
algorithms, and still achieve state-of-the-art performance.
(4) We empirically prove the effectiveness of the proposed
oversampling method through extensive experiments and
ablation studies. We believe that our study can be a useful
and universal minority oversampling method in long-tailed
classification research.

2. Related Work

2.1. Long-tailed Recognition

Re-weighting methods. Re-weighting aims to assign
different weights to training samples to adjust their im-
portance either on class level or instance level. Class-level
re-weighting methods include re-weighting samples by in-
verse class frequency [19,45], CB loss [9], LDAM loss [5],
Balanced softmax [34], LADE loss [17]. Instance-level re-
weighting methods include Focal loss [25] and Influence-
balanced loss [32].

Resampling methods. Resampling methods aim to
modify the training distributions to decrease the level of im-
balance [20]. Resampling methods include undersampling
and oversampling. Undersampling methods [41, 49] which
discard the majority samples can lose some valuable infor-

mation, and it is infeasible when the imbalance between
classes is too high.

The simplest form of oversampling is random over-
sampling (ROS) [3, 41], which oversamples all minority
classes until class balance is achieved. This method is sim-
ple and can be easily used for any algorithm, but since the
same sample is repeatedly drawn, it can lead to overfit-
ting [36]. As a more advanced method, Synthetic Minor-
ity Over-sampling Technique (SMOTE) [6], which over-
samples minority samples by interpolating between exist-
ing minority samples and their nearest minority neighbors,
was proposed. After the success of SMOTE, several vari-
ants have been developed: Borderline-SMOTE [14] which
oversamples the minority samples near class borders, and
Safe-level-SMOTE [4], which defines safe regions not to
oversample samples with different classes. These methods
have been widely used in classical machine learning algo-
rithms, but there are difficulties in using them for large-
scale image datasets due to the high computational com-
plexity of calculating K-Nearest Neighbor for every sam-
ple. To solve this issue, Generative Adversarial Minority
Oversampling (GAMO) [31] produces new minority sam-
ples by training a convex generator, inspired by the suc-
cess of generative adversarial networks (GANs) [12] in im-
age generation. However, training the generator incurs a
lot of additional training cost, and GAMO can also suffer
from the infamous mode collapse of GANs [2]. Another re-
cent line of research is oversampling in the feature space
rather than input space: Deep Over-sampling (DOS) [1],
Feature-space Augmentation (FSA) [8], and Meta Seman-
tic Augmentation (MetaSAug) [24]. These methods aim
to augment minority classes in the feature space by sam-
pling from the linear subspace in-class neighbors [1], using
learned features from pretrained networks [8], or using im-
plicit semantic data augmentation (ISDA) algorithm [44].
However, DOS [1] requires finding the nearest neighbors in
feature space, FSA [8] requires the pre-trained feature sub-
network and the classifier for feature augmentation proce-
dure. Lastly, MetaSAug [24] demands additional uniform
validation samples that outnumber the number of samples
in tail classes and hundreds and thousands of iterations for
training. Consequently, these methods are less cost-efficient
and technically difficult to perform. On the other hand, our
method oversamples diverse minority samples with a sim-
ple data augmentation technique and outperforms all previ-
ous methods while maintaining reasonable training costs.

Other long-tailed methods. Recently, significant im-
provement has been achieved by two-stage algorithms:
Deferred re-weighting (DRW) [5], classifier re-training
(cRT) and learnable weight scaling (LWS) [22], and Mixup
Shifted Label-Aware Smoothing model (MiSLAS) [50].
Meanwhile, bilateral branch network (BBN) [51] uses an
additional network branch for re-balancing, and RIDE [43]
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uses multiple branches named experts, each learning to spe-
cialize in different classes. Another line of recent research
employs meta-learning methods; Meta-Weight-Net [37]
learns an explicit loss-weight function, and Meta Sam-
pler [34] is used to estimate the optimal class sample rate.

2.2. Data Augmentation and Mixup methods

Spatial-level augmentation methods have shown good
performance in computer vision fields. Cutout [10] removes
random regions while CutMix [46] fills the removed re-
gions with patches from another training image. In addi-
tion, Mixup methods [38,42,48] linearly interpolate two im-
ages in a training dataset. Since data augmentation method
is closely related to oversampling methods, some recent
long-tailed recognition methods have used Mixup method.
Zhou et al. [51] compares Mixup as a baseline method, and
MiSLAS [50] uses Mixup in their Stage-1 training. How-
ever, these methods naively use Mixup, and little work has
been done to explore appropriate data augmentation tech-
niques for a long-tailed dataset. Recently, for an imbalanced
dataset, Remix [7] assigns the label in favor of the minority
classes when mixing two samples. Unlike these methods,
we propose to sample images from different distributions,
considering the specificity of long-tailed data.

3. Context-rich Minority Oversampling
3.1. Algorithm

We propose a new oversampling method called Context-
rich Minority Oversampling (CMO). CMO utilizes the con-
texts of the majority samples to diversify the limited context
of minority samples. In other words, the background images
are sampled from majority classes and combined with fore-
ground images of minority classes. Let x ∈ RW×H×C and
y denote a training image and its label, respectively. Then
we aim to generate a new sample (x̃, ỹ) by combining two
training samples (xb, yb) and (xf , yf ). Here, the image xb

is used as a background image, and the image xf provides
the foreground patch to be pasted on (xb, yb).

For the image combining method, we choose Cut-
Mix [46] data augmentation based on its simplicity and ef-
fectiveness. Following CutMix [46] setting, image and label
pairs are augmented as

x̃ = M� xb + (1−M)� xf

ỹ = λyb + (1− λ)yf (1)

where (1 − M) ∈ {0, 1}W×H denotes a binary mask in-
dicating where to select the patch and paste into a back-
ground image. 1 is a binary mask filled with ones, and � is
element-wise multiplication. The combination ratio λ ∈ R
between two images is sampled from the beta distribution
Beta(α, α). For sampling the mask and its coordinates, we
follow the setting of original CutMix [46].

Since CutMix is originally designed for data augmen-
tation on a class balanced dataset, Eq. 1 does not rep-
resent majority or minority class of samples. To change
it to CMO, we put sampling data distributions for fore-
ground (xf , yf ) and background samples (xb, yb). In our
design, the background samples (xb, yb) should be biased
to majority classes. So, we sample the background sam-
ples from the original data distribution P . Meanwhile, the
foreground samples (xf , yf ) are sampled from minor-class-
weighted distributionQ to be biased to the minority classes.
In short, CMO consists of data sampling from two distribu-
tions (xb, yb) ∼ P and (xf , yf ) ∼ Q, and image combin-
ing of Eq. 1. The pseudo-code of the training procedure is
presented in Algorithm 1.

Algorithm 1 Context-rich Minority Oversampling (CMO)

Require: Dataset DN
i=1, model parameters θ, P , Q, any

loss function L(·).
1: Randomly initialize θ.
2: Sample weighted dataset D̃N

i=1 ∼ Q.
3: for epoch = 1, . . . , T do
4: for batch i = 1, . . . , B do
5: Draw a mini-batch (xbi , y

b
i ) from DN

i=1

6: Draw a mini-batch (xfi , y
f
i ) from D̃N

i=1

7: λ ∼ Beta(α, α)
8: x̃i = M� xbi + (1−M)� xfi
9: ỹi = λybi + (1− λ)yfi

10: θ ← θ − η∇L((x̃i, ỹi); θ)
11: end for
12: end for

3.2. Minor-class-weighted distribution Q

To sample the foreground image from minority classes,
we design the minor-class-weighted distribution Q by
taking the idea from the re-weighting methods. The re-
weighting approach, dating back to the classical importance
sampling method [21], has provided a way how to assign
appropriate weights to samples. Commonly used sampling
strategies include ones which give a weight inversely pro-
portional to class frequency [19, 45], a smoothed class fre-
quency [29, 30], or the effective number [9].

Let nk be the number of samples in k-th class, then for
the entire C classes, the total number of samples is N =∑C

k=1 nk. Then, the generalized sampling probability for
k-th class can be defined by

q(r, k) =
1/nrk∑C

k′=1 1/n
r
k′

, (2)

where the k-th class has a sampling weight inversely pro-
portional to nrk. As r increases, the weight of the minor class
becomes increasingly larger than that of the major class.
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By adjusting the value of r, we can examine diverse sam-
pling strategy. Setting r = 1 is to use the inverse class fre-
quency [19,45] while setting r = 1/2 is to use the smoothed
inverse class frequency as in [29, 30]. We can also use the
effective number [9] instead of nrk which is defined as

E(k) =
(1− βnk)

(1− β)
, (3)

where β = (N − 1)/N . Since CMO is a new approach
for long-tailed classification, it is hard to predict the per-
formance of each sampling strategy for CMO. So, we eval-
uate the different sampling strategies on the CIFAR-100-
LT [23] and select the best strategy q(1, k) for the minor-
class-weighted distribution Q of CMO. The experimental
results are shown in Table 9 of the experimental section.

3.3. Regularization effect of CMO

A recent study [50] has reported that models trained on
long-tailed datasets are more over-confident than the mod-
els trained on balanced data. Also, the study shows that
the performance of long-tailed classification can be im-
proved by solving over-confident issue. CMO also can be
interpreted as a way to mitigate the over-confident issue
for long-tailed classification. Inherited from CutMix, CMO
uses a soft-target label ỹ as mentioned in Eq. 1. The soft-
target label penalizes over-confident outputs, similar to the
label smoothing regularization [39]. Therefore, we argue
that CMO contributes not only to minority sample gener-
ation but also to mitigating the over-confident issues, which
enable an impressive performance improvement on diverse
long-tail settings. We will prove the effectiveness of CMO
with various experiments in the experimental section.

4. Experiments

We present various experiments and analyses of CMO
in this section. We first describe our experimental settings
with implementation details in Section 4.1. Next, we show
the effectiveness of CMO on three long-tailed classification
benchmarks: CIFAR-100-LT, ImageNet-LT, and iNaturalist,
where CMO consistently boosts the performance of base-
lines with state-of-the-art level accuracy (Section 4.2). We
also present in-depth analyses of CMO to study its inherent
characteristics in Section 4.3.

4.1. Experimental Settings

Datasets. We validate CMO on the most commonly used
long-tailed recognition benchmark datasets: CIFAR-100-
LT [5], ImageNet-LT [28], and iNaturalist 2018 [18] (see
Table 1). CIFAR-100-LT and ImageNet-LT are artificially
made imbalanced from their balanced versions (CIFAR-
100 [23] and ImageNet-2012 [35]). The iNaturalist 2018

dataset is a large-scale real-world dataset that exhibits long-
tailed imbalance. We used the official training and test splits
in our experiments.

Table 1. Summary of datasets. The imbalance ratio ρ is defined
by ρ = maxk{nk}/mink{nk}, where nk is the number of sam-
ples in the k-th class.

Dataset # of classes # of training Imbalance ratio

CIFAR-100-LT 100 50K {10, 50, 100}
ImageNet-LT 1,000 115.8K 256
iNaturalist 2018 8,142 437.5K 500

Evaluation Metrics. The performances are mainly reported
as the overall top-1 accuracy. Following [28], we also report
the accuracy of three disjoint subsets: Many-shot classes
(classes with more than 100 training samples), Medium-
shot classes (classes with 20 to 100 samples), and Few-shot
classes (classes under 20 samples).
Comparison methods. We compare CMO with the mi-
nority oversampling methods, the state-of-the-art long-tail
recognition methods, and their combinations.

• Minority oversampling. (1) No oversampling
(Vanilla);(2) Random oversampling (ROS) [41], that
oversamples minority samples to balance the classes
in training data; (3) Remix [7], which oversamples
minority classes by assigning higher weights to the
minority labels when using Mixup [48]; (4) Feature
space augmentation (FSA) [8];

• Re-weighting. (5) Focal loss [25], which is an instance
re-weighting method; (6) LDAM loss [5], which regu-
larizes the minority classes to increase margins to deci-
sion boundary; (7) IB loss [32], which re-weights sam-
ples by their influences; (8) Balanced Softmax [34],
an unbiased extension of Softmax; (9) LADE [17],
which disentangles the source label distribution from
the model prediction in training.

• Other state-of-the-art methods. (10) Deferred re-
weighting (DRW) [5] and (11) Decouple [22] are two-
stage algorithms that re-balance the classifiers during
fine-tuning; (12) BBN [51] and (13) RIDE [43] use ad-
ditional network branches to handle class imbalance;
(14) Causal Norm [40], which disentangles causal ef-
fects and adjusts the effects in training; (15) MiS-
LAS [50], the two-stage algorithm, enhances classifier
learning and calibration with label-aware smoothing
(LAS) in Stage-2.

Implementation. We use PyTorch [33] for all experiments.
For CIFAR datasets, we use ResNet-32 [15]. The networks
are trained for 200 epochs following the training strategy
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Table 2. State-of-the-art comparison on CIFAR-100-LT
dataset. Results with classification accuracy (%) for ResNet-32
architecture on CIFAR-100-LT with different imbalance ratios. ∗,
† and ‡ are from the original paper, [40] and [17], respectively. The
best results are marked in bold.

Imbalance ratio 100 50 10

Cross Entropy (CE) 38.6 44.0 56.4
CE-DRW 41.1 45.6 57.9
LDAM-DRW [5] 41.7 47.9 57.3
BBN [51]† 42.6 47.1 59.2
Causal Norm [40]† 44.1 50.3 59.6
IB Loss [32]∗ 45.0 48.9 58.0
Balanced Softmax [34]‡ 45.1 49.9 61.6
LADE [17]∗ 45.4 50.5 61.7
Remix [7] 45.8 49.5 59.2
RIDE [43] 48.6 51.4 59.8
CE + CMO 43.9 48.3 59.5
CE-DRW + CMO 47.0 50.9 61.7
LDAM-DRW + CMO 47.2 51.7 58.4
RIDE + CMO 50.0 53.0 60.2

in [5]. For ImageNet-LT, we use ResNet-50 as the back-
bone network. The network is trained for 100 epochs with
an initial learning rate of 0.1. The learning rate is decayed
at 60th and 80th epoch by 0.1. For iNaturalist 2018, we use
ResNet-{50, 101, 152} and Wide ResNet-50 [47]. We train
the networks for 200 epochs with an initial learning rate of
0.1, and decay the learning rate at epoch 75 and 160 by 0.1.
All experiments are trained with stochastic gradient descent
(SGD) with momentum 0.9.

4.2. Long-tailed classification benchmarks

4.2.1 CIFAR-100-LT

We conduct experiments on CIFAR-100-LT with differ-
ent imbalance ratios: 10, 50, 100. We apply CMO to var-
ious methods to verify its effectiveness on different algo-
rithms: vanilla cross-entropy loss, class-reweighting loss
(LDAM [5]), two-stage algorithm (DRW [5]), and multi-
branch architecture (RIDE [43]).
Comparison with state-of-the-art methods. The overall
classification accuracies are provided in Table 2. It is a
surprising result that CMO with basic cross-entropy (CE)
loss shows comparable performance with complex long-tail
recognition methods. Moreover, applying CMO to the state-
of-the-art model (i.e., RIDE) further boosts the performance
with a large gap, especially when the imbalance ratios are
high as 50 and 100.
Comparison with oversampling methods. We further
compare CMO with other oversampling techniques for per-
formance improvement when combined with long-tailed
recognition methods in Table 3. The results show that our
method consistently significantly improves the performance

Table 3. Comparison against baselines on CIFAR-100-LT. Re-
sults with classification accuracy (%) of ResNet-32. The best re-
sults are marked in bold.

Vanilla +ROS [41] +Remix [7] +CMO

CE
38.6

(+0.0)
32.3
(-5.3)

40.0
(+1.4)

43.9
(+5.3)

CE-DRW [5]
41.1

(+0.0)
35.9
(-5.2)

45.8
(+4.7)

47.0
(+5.9)

LDAM-DRW [5]
41.7

(+0.0)
32.6
(-9.1)

45.3
(+3.6)

47.2
(+5.5)

RIDE [43]
48.6

(+0.0)
22.6

(-26.0)
44.0
(-4.6)

53.0
(+4.4)

Table 4. State-of-the-art comparison on ImageNet-LT. Results
with classification accuracy (%) of ResNet-50 with state-of-the-
art methods on ImageNet-LT. Baseline results and “∗” are from
the original papers. “†” and “‡” denote the results from [22] and
[40], respectively. The best results are marked in bold.

All Many Med Few

Cross Entropy (CE)† 41.6 64.0 33.8 5.8
Focal Loss [25]‡ 43.7 51.0 40.8 20.8
Decouple-π−norm [22]† 46.7 56.6 44.2 27.4
Decouple-cRT [22]† 47.3 58.8 44.0 26.1
Decouple-LWS [22]† 47.7 57.1 45.2 29.3
Remix [7] 48.6 60.4 46.9 30.7
LDAM-DRW [5] 49.8 60.4 46.9 30.7
CE-DRW 50.1 61.7 47.3 28.8
Balanced Softmax (BS) [34] 51.0 60.9 48.8 32.1
Causal Norm [40]‡ 51.8 62.7 48.8 31.6
LADE [17]∗ 51.9 62.3 49.3 31.2
CE + CMO 49.1 67.0 42.3 20.5
CE-DRW + CMO 51.4 60.8 48.6 35.5
BS + CMO 52.3 62.0 49.1 36.7

of all long-tailed recognition methods. On the other hand,
simply balancing the class distribution with ROS [41] leads
to severe performance degradation. We speculate that this
is because the naive balancing of the sampling distribution
over classes hinders the model from learning generalized
features for major classes and induces the model to memo-
rize the minor class samples. Remix [7] improves the per-
formance of some methods but degrades the performance
when combined with a complex state-of-the-art method,
RIDE [43]. This indicates that a simple labeling policy of
Remix may not be effective when the model complexity
gets large as in RIDE. Since Remix shows the best perfor-
mance when combined with CE-DRW, from now on, we
report the experimental results of Remix using this strategy
unless it is specified.
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Figure 2. Visualization of the minority images generated by CMO (Minority class: Snow goose and Acmon blue (Butterfly)). We
randomly choose generated images for each original image. Our method is able to generate context-rich minority samples with diverse
contexts. For example, while the original ‘Snow goose’ class contains only ‘Snow goose’ images on the grass, the generated images
have various contexts such as the sky, the sea, the sand, and a flock of crows. These generated images lead the model to learn a robust
representation of minority classes.

Table 5. Comparison against baselines on ImageNet-LT. Results
with classification accuracy (%) of ResNet-50. The best results are
marked in bold.

Vanilla +Remix [7] +CMO

CE
41.6

(+0.0)
41.7

(+0.1)
49.7

(+8.1)

CE-DRW [5]
50.1

(+0.0)
48.6
(-1.5)

51.4
(+1.3)

Balanced Softmax [34]
51.0

(+0.0)
49.2
(-1.8)

52.3
(+1.3)

4.2.2 ImageNet-LT

We assess the scalability of CMO on ImageNet-LT with
a combination of various long-tailed recognition meth-
ods. We apply CMO on simple yet effective long-tailed
recognition methods, CE-DRW [5] and Balanced Softmax
(BS) [34].

Comparison with state-of-the-art methods. Results of
our method and other long-tailed recognition methods are
available in Table 4. Applying CMO to the basic training
with CE loss improves the performance with a significant
gap, outperforming most of the recent baselines. Greater
performance improvement on ImageNet-LT compared to
CIFAR-100 indicates that our method can benefit from as
richer context information available in major classes of
ImageNet-LT. In addition, consistent performance improve-
ment of CMO when combined with DRW or BS bolsters
the efficacy of CMO, as it can be easily integrated with
modern state-of-the-art long-tailed recognition methods. It
is noteworthy that as {CE-DRW + CMO } and {BS + CMO
} especially achieve much higher few-shot class accuracy
than other methods, our method is useful in achieving
consistent performance over classes.

Table 6. State-of-the-art comparison on iNaturalist2018. Re-
sults with classification accuracy (%) of ResNet-50 on iNatural-
ist2018. “∗” and “†” indicate the results from the original paper
and [51], respectively. The best results are marked in bold.

All Many Med Few

Cross Entropy (CE) 61.0 73.9 63.5 55.5
IB Loss [32]∗ 65.4 - - -
FSA [8]∗ 65.9 - - -
LDAM-DRW [5]† 66.1 - - -
Decouple-cRT [22]∗ 68.2 73.2 68.8 66.1
Decouple-π−norm [22]∗ 69.3 71.1 68.9 69.3
Decouple-LWS [22]∗ 69.5 71.0 69.8 68.8
BBN [51]∗ 69.6 - - -
Balanced Softmax [34] 70.0 70.0 70.2 69.9
LADE [17]∗ 70.0 - - -
Remix [7]∗ 70.5 - - -
MiSLAS [50]∗ 71.6 - - -
CE + CMO 68.9 76.9 69.3 66.6
CE-DRW + CMO 70.9 68.2 70.2 72.2
BS + CMO 70.9 68.8 70.0 72.3
CE-DRW + CMO + LAS [50] 71.8 69.6 72.1 71.9

Comparison with oversampling methods. In Table 5, we
compare performance improvement with other oversam-
pling techniques. While CMO consistently improves per-
formance for all methods, Remix [7] fails to improve per-
formance of the long-tailed recognition methods and barely
improves the model trained with cross-entropy loss. This
implies that the labeling strategy of Remix is not enough
to compensate for the adverse effect of naively using the
same original distribution as two sampling distributions of
Mixup, especially when the imbalance ratio gets as severe
as 256 of ImageNet-LT. On the other hand, CMO gener-
ates more minority samples by using different distributions
when selecting two images and shows much better perfor-
mance in all tasks.
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4.2.3 iNaturalist 2018

We further evaluate our proposed method on iNaturalist
2018, the real-world large-scale long-tailed dataset.
Comparison with state-of-the-art methods. Table 6
presents the classification results. On the naturally-skewed
dataset, applying CMO to the simple training scheme
of CE-DRW surpasses most of the state-of-the-arts. On
iNaturalist 2018, as in ImageNet-LT, CMO dramatically
improves the performance of cross-entropy loss (CE) by
7.9%p (61.0% → 68.9%). This is because the sample
generation of CMO fully utilizes the abundant context
of training data. Again, it can be seen that remarkable
performance improvement is achieved in the few-shot
classes. Lastly, applying label-aware smoothing (LAS) [50]
to CE-DRW+CMO model achieves the new state-of-the-art
performance. We apply the same stage-2 strategy from
[50].

Results on large models. Since it is well-known that larger
datasets can be fully utilized when the capacity of models is
large enough, we investigate the performance of CMO and
other oversampling methods with large deep networks of
Wide ResNet-50 [47], ResNet-101, and ResNet-152 [15].
We compare CMO with the feature space augmentation
method (FSA) [8]. While both methods improve the vanilla
training with cross-entropy loss, our method shows superior
performance than FSA. This indicates that augmenting sam-
ples by explicitly distinguishing the source of context and
foreground information, and controlling the distribution of
each source is much effective in improving the overall per-
formance.

Table 7. Results on large architectures. Classification accuracy
(%) of large backbone networks on iNaturalist 2018. The results
are copied from the original paper.

Method ResNet-50 Wide ResNet-50 ResNet-101 ResNet-152

CE 61.0 - 65.2 66.2
FSA [8] 65.9 - 68.4 69.1
CMO 70.9 71.9 72.4 72.6

Visualization of generated images. To verify the context-
richness of minority samples generated by CMO, we vi-
sualize the generated images for the minority classes in
Figure 2. From the rarest minority classes, we randomly
choose generated images for each original image. We can
observe that CMO produces diverse minority samples with
various contexts. For example, while the original ‘Snow
goose’ class only contains images of gooses on the grass,
the generated images have various contexts, such as the sky
or sea. Likewise, the butterfly in the third row is newly cre-
ated as diversified images with various contexts, containing
bees and flowers of various colors and shapes. We argue

that various combinations of context and minority samples
encourage the model to learn a robust representation of the
minority classes.

4.3. Analysis

Is distribution for augmenting images important? To
justify the need of different distributions for background
and foreground images, we compare CutMix and CMO.
As can be seen from Table 8, CMO outperforms CutMix
with a large gap for long-tailed classification. In particu-
lar, it shows remarkable performance improvement in Med
and Few-shot classes. The performance gap is due to the ab-
sence of minor-class-weighted distribution in naive CutMix.
Although naive CutMix can generate informative mixed
samples, it has a limited effect to cope with the long-tailed
distribution. Thus, we claim that the use of minor-class-
weighted distribution is a key-point in data augmentation
for long-tailed setting, which enhances the contribution and
originality of CMO.

Table 8. Comparison against CutMix. We use cross-entropy loss
for all experiments.

All Many Med Few

CIFAR-100-LT
CutMix 35.6 71.0 37.9 4.9
CMO 43.9 70.4 42.5 14.4

ImageNet-LT
CutMix 45.5 68.6 38.1 8.1
CMO 49.5 68.3 42.7 21.6

How to choose appropriate probability distribution Q?
We evaluate different sampling strategies in Section 3.2 on
CIFAR-100 with the imbalance ratio 100 and the results are
reported in Table 9. Although the sensitivity for distribution
is not significant, q(1, k) shows the most balanced perfor-
mance.

Table 9. Impact of different sampling distribution Q. Results
on CIFAR-100-LT (imbalance ratio=100) according to different
sampling probabilities Q.

All Many Med Few

q(1/2, k) 42.6 71.6 42.1 9.5
q(1, k) 43.9 70.4 42.5 14.4
q(2, k) 40.1 67.2 36.7 12.3
E(k) [9] 39.5 70.4 38.0 4.7

This result is consistent with the common practice
of balancing the dataset by giving weight in reciprocal
to frequency. While q(2, k), which imposes a higher
probability on the minority class than q(1, k), shows decent
performance in few-shot classes, the overall performance
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slightly deteriorates. We assume this is because we cannot
sample more diverse images when imposing too high
probabilities to the few-shot classes. Based on this result,
we set Q as q(1, k) in our all experiments.

Why should we oversample only for the foreground sam-
ples? Although we have discussed the desired minority
oversampling in Figure 1, one may still wonder why ap-
plying the oversampling only for the foreground samples
is better than oversampling both patches and background
samples or oversampling only the backgrounds. To verify
our design choice, we evaluate two variants of CMO. The
first variant, CMO back, samples background images from
minor-class-weighted distribution and patches from origi-
nal distribution, which is exactly the opposite of CMO, i.e.,
(xb, yb) ∼ Q, (xf , yf ) ∼ P . The second variant, CMO
minor, samples both background and patches from minor-
class-weighted distribution, i.e., (xb, yb), (xf , yf ) ∼ Q. We
report the results of applying variants to the model training
with CE loss and LDAM loss [5] in Table 10.

Table 10. Ablation study. Results on variants of CMO with
ResNet-32 on imbalanced CIFAR-100, imbalance ratio of 100.

All Many Med Few

Cross Entropy (CE) 38.6 65.3 37.6 8.7
CE + CMO minor 37.9 58.3 40.4 11.2
CE + CMO back 40.1 64.7 40.2 11.3
CE + CMO 43.9 70.4 42.5 14.4

LDAM [5] 41.7 61.4 42.2 18.0
LDAM + CMO minor 31.7 50.2 33.2 8.4
LDAM + CMO back 44.2 59.2 46.6 24.0
LDAM + CMO 47.2 61.5 48.6 28.8

We first observe that CMO minor shows severe perfor-
mance degradation in both methods. We suspect that this is
because the rich context of the majority samples cannot be
utilized. In contrast, CMO back shows decent performance
improvements, but far less than the original CMO. This
is because, in the CutMix strategy, the background image
has a high probability that the object is overlapped by
the foreground image. Therefore, we can expect the loss
of information about minority classes in the background
image, resulting in a limited performance boost.

Comparison with other minority augmentations. We fur-
ther analyze the effectiveness of CutMix compared to the
other augmentation strategy, such as Mixup [48], color jit-
ter, and Gaussian blur. For Mixup, we use the same sam-
pling strategy with CMO, and for color jitter and Gaussian
blur, which do not interpolate two images, we apply aug-
mentation only to the minority classes and oversample those
classes. As shown in Table 11, other augmentation methods
provide limited performance gain compared to the CutMix.

We suspect that it is because the pixel-level transformations
are not effective for producing minority samples with rich
context. Gaussian blur and color jitter do not combine two
images, thus it is hard to add a new context to minority sam-
ples. Although Mixup combines two images, it does not dis-
tinguish the role of two samples, limiting the control of the
source of context and patch information. On the other hand,
CutMix can create diverse images with larger changes at
pixel-level compared to other methods.

Table 11. Data augmentation strategies. Comparison against dif-
ferent augmentation strategies for generating new minority sam-
ples on imbalanced CIFAR-100 with imbalance ratio of 100.

All Many Med Few

CMO w/ Gaussian Blur 31.1 54.7 28.8 6.2
CMO w/ Color Jitter 34.7 58.9 34.4 6.8
CMO w/ Mixup 38.0 54.8 40.2 15.9
CMO w/ CutMix 43.9 70.4 42.5 14.4

5. Conclusion
We have proposed a novel context-rich oversampling

method, CMO, to solve data imbalance problem. We tackle
the fundamental problem of previous oversampling meth-
ods that generate context-limited minority samples, which
rather intensifies the overfitting problem. Our key idea is to
transfer the rich contexts of majority samples to minority
samples to augment context-rich minority samples. Imple-
mentation of CMO is simple and intuitive. Extensive exper-
iments on various benchmark datasets not only show that
our CMO brings a significant performance improvement,
but also that adding our oversampling method to the basic
losses renews the state-of-the-art.

Limitations. Not all but in some cases, the performance im-
provement for the minority classes occurs by sacrificing the
performance of the majority classes. For example, in Ta-
ble 4, comparing the case of using only CE-DRW and ap-
plying our method to CE-DRW, the performance increases
by 6.7%p in the few-shot classes, but decreases by 0.9%p
in the many-shot classes. Future works should therefore
include follow-up works designed to improve the perfor-
mance of all classes without sacrificing the performance of
the many-shot classes.

Potential Negative Societal Impact. Since our method cre-
ates new samples, it can benefit more from longer train-
ing and deeper architectures. Thus, our method may lead to
consuming more resources, which has a risk that the use of
GPUs for machine learning could accelerate environmental
degradation [16]. Nevertheless, we would like to emphasize
that our method helps achieve better performance with the
same training iteration and backbone network, without long
training.
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Supplementary Material
A. Implementation details
In this section, we describe more implementation details which are not included in Section 4.1.

CIFAR-100-LT. For fair comparison, we use the same random seed to make CIFAR-100-LT and follow the implementation
of [5]. We train ResNet-32 [15] by SGD optimizer with a momentum of 0.9 and weight decay of 2×10−4. As in [5], we use
simple data augmentation [15] by padding 4 pixels on each side and apply random cropping or horizontal flipping to 32× 32
size. We train for 200 epochs and use a linear warm-up of the learning rate [13] in the first five epochs. The learning rate is
initialized as 0.1, and it is decayed at the 160th and 180th epoch by 0.01. The model is trained with a batch size of 128 on
single GTX 1080Ti. We turn off applying CMO for the last three epochs so that the model can be finetuned in the original
input space.
For experiments in Table 11, we use the same strategy for {CMO w/ Mixup}. For {CMO w/ Gaussian Blur} and {CMO w/
Color Jitter} which do not mix two images, we divide classes into two group: majority and minority. Then, for the minority
group, we augment the data with color jitter and gaussian blur, respectively. We set brightness to 0.5 and hue to 0.3 for color
jitter, and set kernel size as (5, 7) and sigma as (0.1, 5) for gaussian blur using PyTorch [33] implemented functions.

ImageNet-LT. For ImageNet-LT, we follow most of the details from [43]. As in [43], we perform simple horizontal flips,
color jittering, and taking random crops of size 224 × 224. We use ResNet-50 as a backbone network. The networks are
trained with a batch size of 256 on 4 GTX 1080Ti GPUs for 100 epochs using SGD with an initial learning rate of 0.1
decayed by 0.1 at 60 epochs and 80 epochs.

iNaturalist 2018. For iNatualist 2018, we use the same data augmentation strategy as in ImageNet-LT. Multiple backbone
networks are experimented on iNaturalist 2018, including ResNet-50, ResNet-101, ResNet-152 [15], and Wide ResNet-
50 [47]. All backbone networks are trained with a batch size of 512 on 8 Tesla V100 GPUs for 200 epochs using SGD with
an initial learning rate of 0.1 decayed by 0.1 at 75 epochs and 160 epochs.

B. Comparison with oversampling methods.
We compare CMO with other oversampling methods for performance improvement on CIFAR-100 with imbalance ratio
50 and 10 in Table 12. As in the imbalance ratio of 100, our method consistently improves performance in all long-tailed
recognition methods.

Table 12. Comparison against baselines on CIFAR-100-LT. Results with classification accuracy (%) of ResNet-32. The best results are
marked in bold.

Imbalance ratio 50 10
Method Vanilla +ROS [41] +Remix [7] +CMO Vanilla +ROS [41] +Remix [7] +CMO

CE
44.0

(+0.0)
39.7
(-4.3)

45.0
(+1.0)

48.3
(+4.3)

56.4
(+0.0)

55.6
(-0.8)

58.7
(+2.3)

59.5
(+3.1)

CE-DRW [5]
45.6

(+0.0)
41.3
(-4.3)

49.5
(+3.9)

50.9
(+5.3)

57.9
(+0.0)

56.4
(-1.5)

59.2
(+1.3)

61.7
(+3.8)

LDAM-DRW [5]
47.9

(+0.0)
38.3
(-9.6)

48.8
(+0.9)

51.7
(+3.8)

57.3
(+0.0)

53.9
(-3.4)

55.9
(-1.4)

58.4
(+1.1)

RIDE [43]
51.4

(+0.0)
31.3

(-20.1)
47.9
(-3.5)

53.0
(+1.6)

59.8
(+0.0)

49.4
(-10.4)

59.5
(-0.3)

60.2
(+0.4)

C. Pseudo-code of Context-rich Minority Oversampling
We present the PyTorch-syle pseudo-code of CMO algorithm in Algorithm 2. Note that CMO is easy to implement with just
a few lines that are easily applicable to any loss, networks, or algorithms. Thus, CMO can be a very practical and effective
solution for handling imbalanced dataset.
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Algorithm 2 PyTorch-style pseudo-code for CMO

# original loader: data loader from original data distribution
# weighted loader: data loader from minor-class-weighted distribution
# model: any backbone network such as ResNet or multi-branch networks (RIDE)
# loss: any loss such as CE, LDAM, balanced softmax, RIDE loss

for epoch in Epochs:
# load a batch for background images from original data dist.
for x b, y b in original loader:

# load a batch for foreground from minor-class-weighted dist.
x f, y f = next(weighted loader)

# get coordinate for random binary mask
lambda = np.random.uniform(0,1)
cx = np.random.randint(W) # W: width of images
cy = np.random.randint(H) # H: height of images
bbx1 = np.clip(cx - int(W * np.sqrt(1. - lambda))//2,0,W)
bbx2 = np.clip(cx + int(W * np.sqrt(1. - lambda))//2,0,W)
bby1 = np.clip(cy - int(H * np.sqrt(1. - lambda))//2,0,H)
bby2 = np.clip(cy + int(H * np.sqrt(1. - lambda))//2,0,H)

# get minor-oversampled images
x b[:, :, bbx1:bbx2, bby1:bby2] = x f[:, :, bbx1:bbx2, bby1:bby2]
lambda = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (W * H))# adjust lambda

# output (x f is attached to x b)
output = model(x b)

# loss
losses = loss(output, y b) * lambda + loss(output, y f) * (1. - lambda)

# optimization step
losses.backward()
optimizer.step()
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