
CutMix: Regularization Strategy to Train Strong Classifiers
with Localizable Features

Sangdoo Yun1 Dongyoon Han1 Seong Joon Oh2 Sanghyuk Chun1

Junsuk Choe1,3 Youngjoon Yoo1

1Clova AI Research, NAVER Corp.
2Clova AI Research, LINE Plus Corp.

3Yonsei University

Abstract

Regional dropout strategies have been proposed to en-
hance the performance of convolutional neural network
classifiers. They have proved to be effective for guiding
the model to attend on less discriminative parts of ob-
jects (e.g. leg as opposed to head of a person), thereby
letting the network generalize better and have better ob-
ject localization capabilities. On the other hand, current
methods for regional dropout remove informative pixels on
training images by overlaying a patch of either black pix-
els or random noise. Such removal is not desirable be-
cause it leads to information loss and inefficiency dur-
ing training. We therefore propose the CutMix augmen-
tation strategy: patches are cut and pasted among train-
ing images where the ground truth labels are also mixed
proportionally to the area of the patches. By making ef-
ficient use of training pixels and retaining the regulariza-
tion effect of regional dropout, CutMix consistently outper-
forms the state-of-the-art augmentation strategies on CI-
FAR and ImageNet classification tasks, as well as on the Im-
ageNet weakly-supervised localization task. Moreover, un-
like previous augmentation methods, our CutMix-trained
ImageNet classifier, when used as a pretrained model, re-
sults in consistent performance gains in Pascal detection
and MS-COCO image captioning benchmarks. We also
show that CutMix improves the model robustness against
input corruptions and its out-of-distribution detection per-
formances. Source code and pretrained models are avail-
able at https://github.com/clovaai/CutMix-PyTorch.

1. Introduction
Deep convolutional neural networks (CNNs) have shown

promising performances on various computer vision prob-
lems such as image classification [31, 20, 12], object de-

ResNet-50 Mixup [48] Cutout [3] CutMix

Image

Label Dog 1.0
Dog 0.5
Cat 0.5

Dog 1.0
Dog 0.6
Cat 0.4

ImageNet
Cls (%)

76.3
(+0.0)

77.4
(+1.1)

77.1
(+0.8)

78.6
(+2.3)

ImageNet
Loc (%)

46.3
(+0.0)

45.8
(-0.5)

46.7
(+0.4)

47.3
(+1.0)

Pascal VOC
Det (mAP)

75.6
(+0.0)

73.9
(-1.7)

75.1
(-0.5)

76.7
(+1.1)

Table 1: Overview of the results of Mixup, Cutout, and
our CutMix on ImageNet classification, ImageNet localiza-
tion, and Pascal VOC 07 detection (transfer learning with
SSD [24] finetuning) tasks. Note that CutMix significantly
improves the performance on various tasks.

tection [30, 24], semantic segmentation [1, 25], and video
analysis [28, 32]. To further improve the training efficiency
and performance, a number of training strategies have been
proposed, including data augmentation [20] and regulariza-
tion techniques [34, 17, 38].

In particular, to prevent a CNN from focusing too much
on a small set of intermediate activations or on a small re-
gion on input images, random feature removal regulariza-
tions have been proposed. Examples include dropout [34]
for randomly dropping hidden activations and regional
dropout [3, 51, 33, 8, 2] for erasing random regions on
the input. Researchers have shown that the feature removal
strategies improve generalization and localization by letting
a model attend not only to the most discriminative parts of
objects, but rather to the entire object region [33, 8].
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While regional dropout strategies have shown improve-
ments of classification and localization performances to a
certain degree, deleted regions are usually zeroed-out [3,
33] or filled with random noise [51], greatly reducing the
proportion of informative pixels on training images. We rec-
ognize this as a severe conceptual limitation as CNNs are
generally data hungry [27]. How can we maximally utilize
the deleted regions, while taking advantage of better gener-
alization and localization using regional dropout?

We address the above question by introducing an aug-
mentation strategy CutMix. Instead of simply removing
pixels, we replace the removed regions with a patch from
another image (See Table 1). The ground truth labels are
also mixed proportionally to the number of pixels of com-
bined images. CutMix now enjoys the property that there is
no uninformative pixel during training, making training ef-
ficient, while retaining the advantages of regional dropout
to attend to non-discriminative parts of objects. The added
patches further enhance localization ability by requiring the
model to identify the object from a partial view. The train-
ing and inference budgets remain the same.

CutMix shares similarity with Mixup [48] which mixes
two samples by interpolating both the image and la-
bels. While certainly improving classification performance,
Mixup samples tend to be unnatural (See the mixed image
in Table 1). CutMix overcomes the problem by replacing
the image region with a patch from another training image.

Table 1 gives an overview of Mixup [48], Cutout [3],
and CutMix on image classification, weakly supervised lo-
calization, and transfer learning to object detection meth-
ods. Although Mixup and Cutout enhance ImageNet classi-
fication, they decrease the ImageNet localization or object
detection performances. On the other hand, CutMix consis-
tently achieves significant enhancements across three tasks.

We present extensive evaluations of CutMix on various
CNN architectures, datasets, and tasks. Summarizing the
key results, CutMix has significantly improved the accuracy
of a baseline classifier on CIFAR-100 and has obtained the
state-of-the-art top-1 error 14.47%. On ImageNet [31], ap-
plying CutMix to ResNet-50 and ResNet-101 [12] has im-
proved the classification accuracy by +2.28% and +1.70%,
respectively. On the localization front, CutMix improves the
performance of the weakly-supervised object localization
(WSOL) task on CUB200-2011 [44] and ImageNet [31]
by +5.4% and +0.9%, respectively. The superior localiza-
tion capability is further evidenced by fine-tuning a detec-
tor and an image caption generator on CutMix-ImageNet-
pretrained models; the CutMix pretraining has improved
the overall detection performances on Pascal VOC [6]
by +1 mAP and image captioning performance on MS-
COCO [23] by +2 BLEU scores. CutMix also enhances the
model robustness and alleviates the over-confidence issue
[13, 22] of deep networks.

2. Related Works

Regional dropout: Methods [3, 51] removing random re-
gions in images have been proposed to enhance the gener-
alization performance of CNNs. Object localization meth-
ods [33, 2] also utilize the regional dropout techniques for
improving the localization ability of CNNs. CutMix is sim-
ilar to those methods, while the critical difference is that
the removed regions are filled with patches from another
training images. DropBlock [8] has generalized the regional
dropout to the feature space and have shown enhanced gen-
eralizability as well. CutMix can also be performed on the
feature space, as we will see in the experiments.

Synthesizing training data: Some works have explored
synthesizing training data for further generalizability. Gen-
erating new training samples by Stylizing ImageNet [31, 7]
has guided the model to focus more on shape than tex-
ture, leading to better classification and object detection per-
formances. CutMix also generates new samples by cutting
and pasting patches within mini-batches, leading to perfor-
mance boosts in many computer vision tasks; unlike styl-
ization as in [7], CutMix incurs only negligible additional
cost for training. For object detection, object insertion meth-
ods [5, 4] have been proposed as a way to synthesize objects
in the background. These methods aim to train a good rep-
resent of a single object samples, while CutMix generates
combined samples which may contain multiple objects.

Mixup: CutMix shares similarity with Mixup [48, 41] in
that both combines two samples, where the ground truth la-
bel of the new sample is given by the linear interpolation
of one-hot labels. As we will see in the experiments, Mixup
samples suffer from the fact that they are locally ambiguous
and unnatural, and therefore confuses the model, especially
for localization. Recently, Mixup variants [42, 35, 10, 40]
have been proposed; they perform feature-level interpola-
tion and other types of transformations. Above works, how-
ever, generally lack a deep analysis in particular on the lo-
calization ability and transfer-learning performances. We
have verified the benefits of CutMix not only for an image
classification task, but over a wide set of localization tasks
and transfer learning experiments.

Tricks for training deep networks: Efficient training of
deep networks is one of the most important problems in
computer vision community, as they require great amount
of compute and data. Methods such as weight decay,
dropout [34], and Batch Normalization [18] are widely used
to efficiently train deep networks. Recently, methods adding
noises to the internal features of CNNs [17, 8, 46] or adding
extra path to the architecture [15, 14] have been proposed to
enhance image classification performance. CutMix is com-
plementary to the above methods because it operates on the
data level, without changing internal representations or ar-
chitecture.



3. CutMix
We describe the CutMix algorithm in detail.

3.1. Algorithm

Let x ∈ RW×H×C and y denote a training image and
its label, respectively. The goal of CutMix is to generate a
new training sample (x̃, ỹ) by combining two training sam-
ples (xA, yA) and (xB , yB). The generated training sample
(x̃, ỹ) is used to train the model with its original loss func-
tion. We define the combining operation as

x̃ = M� xA + (1−M)� xB
ỹ = λyA + (1− λ)yB ,

(1)

where M ∈ {0, 1}W×H denotes a binary mask indicating
where to drop out and fill in from two images, 1 is a binary
mask filled with ones, and� is element-wise multiplication.
Like Mixup [48], the combination ratio λ between two data
points is sampled from the beta distribution Beta(α, α). In
our all experiments, we set α to 1, that is λ is sampled from
the uniform distribution (0, 1). Note that the major differ-
ence is that CutMix replaces an image region with a patch
from another training image and generates more locally nat-
ural image than Mixup does.

To sample the binary mask M, we first sample the
bounding box coordinates B = (rx, ry, rw, rh) indicating
the cropping regions on xA and xB . The region B in xA is
removed and filled in with the patch cropped from B of xB .

In our experiments, we sample rectangular masks M
whose aspect ratio is proportional to the original image. The
box coordinates are uniformly sampled according to:

rx ∼ Unif (0,W ) , rw =W
√
1− λ,

ry ∼ Unif (0, H) , rh = H
√
1− λ

(2)

making the cropped area ratio rwrh
WH = 1−λ. With the crop-

ping region, the binary mask M ∈ {0, 1}W×H is decided
by filling with 0 within the bounding box B, otherwise 1.

In each training iteration, a CutMix-ed sample (x̃, ỹ)
is generated by combining randomly selected two training
samples in a mini-batch according to Equation (1). Code-
level details are presented in Appendix A. CutMix is simple
and incurs a negligible computational overhead as existing
data augmentation techniques used in [36, 16]; we can effi-
ciently utilize it to train any network architecture.

3.2. Discussion

What does model learn with CutMix? We have motivated
CutMix such that full object extents are considered as cues
for classification, the motivation shared by Cutout, while
ensuring two objects are recognized from partial views in a
single image to increase training efficiency. To verify that
CutMix is indeed learning to recognize two objects from

Cutout Mixup CutMix

CAM for 

‘St. Bernard’

CAM for 

‘Poodle’

Input

Image

Original

Samples

Figure 1: Class activation mapping (CAM) [52] visualiza-
tions on ‘Saint Bernard’ and ‘Miniature Poodle’ samples
using various augmentation techniques. From top to bot-
tom rows, we show the original images, input augmented
image, CAM for class ‘Saint Bernard’, and CAM for class
‘Miniature Poodle’, respectively. Note that CutMix can take
advantage of the mixed region on image, but Cutout cannot.

Mixup Cutout CutMix

Usage of full image region 4 8 4
Regional dropout 8 4 4
Mixed image & label 4 8 4

Table 2: Comparison among Mixup, Cutout, and CutMix.

their respective partial views, we visually compare the acti-
vation maps for CutMix against Cutout [3] and Mixup [48].
Figure 1 shows example augmentation inputs as well as
corresponding class activation maps (CAM) [52] for two
classes present, Saint Bernard and Miniature Poodle. We
use vanilla ResNet-50 model1 for obtaining the CAMs to
clearly see the effect of augmentation method only.

We observe that Cutout successfully lets a model focus
on less discriminative parts of the object, such as the belly
of Saint Bernard, while being inefficient due to unused pix-
els. Mixup, on the other hand, makes full use of pixels, but
introduces unnatural artifacts. The CAM for Mixup, as a re-
sult, shows that the model is confused when choosing cues
for recognition. We hypothesize that such confusion leads
to its suboptimal performance in classification and localiza-
tion, as we will see in Section 4.

CutMix efficiently improves upon Cutout by being able
to localize the two object classes accurately. We summarize

1We use ImageNet-pretrained ResNet-50 provided by PyTorch [29].



Figure 2: Top-1 test error plot for CIFAR100 (left) and Im-
ageNet (right) classification. Cutmix achieves lower test er-
rors than the baseline at the end of training.

the key differences among Mixup, Cutout, and CutMix in
Table 2.
Analysis on validation error: We analyze the effect
of CutMix on stabilizing the training of deep networks.
We compare the top-1 validation error during the training
with CutMix against the baseline. We train ResNet-50 [12]
for ImageNet Classification, and PyramidNet-200 [11] for
CIFAR-100 Classification. Figure 2 shows the results.

We observe, first of all, that CutMix achieves lower val-
idation errors than the baseline at the end of training. At
epoch 150 when the learning rates are reduced, the base-
lines suffer from overfitting with increasing validation error.
CutMix, on the other hand, shows a steady decrease in val-
idation error; diverse training samples reduce overfitting.

4. Experiments
In this section, we evaluate CutMix for its capability to

improve localizability as well as generalizability of a trained
model on multiple tasks. We first study the effect of Cut-
Mix on image classification (Section 4.1) and weakly su-
pervised object localization (Section 4.2). Next, we show
the transferability of a CutMix pre-trained model when it is
fine-tuned for object detection and image captioning tasks
(Section 4.3). We also show that CutMix can improve the
model robustness and alleviate the model over-confidence
in Section 4.4.

All experiments were implemented and evaluated on
NAVER Smart Machine Learning (NSML) [19] platform
with PyTorch [29]. Source code and pretrained models are
available at https://github.com/clovaai/CutMix-PyTorch.

4.1. Image Classification

4.1.1 ImageNet Classification

We evaluate on ImageNet-1K benchmark [31], the dataset
containing 1.2M training images and 50K validation im-
ages of 1K categories. For fair comparison, we use the stan-
dard augmentation setting for ImageNet dataset such as re-
sizing, cropping, and flipping, as done in [11, 8, 16, 37].
We found that regularization methods including Stochastic

Model # Params
Top-1

Err (%)
Top-5

Err (%)

ResNet-152* 60.3 M 21.69 5.94
ResNet-101 + SE Layer* [15] 49.4 M 20.94 5.50
ResNet-101 + GE Layer* [14] 58.4 M 20.74 5.29
ResNet-50 + SE Layer* [15] 28.1 M 22.12 5.99
ResNet-50 + GE Layer* [14] 33.7 M 21.88 5.80

ResNet-50 (Baseline) 25.6 M 23.68 7.05
ResNet-50 + Cutout [3] 25.6 M 22.93 6.66
ResNet-50 + StochDepth [17] 25.6 M 22.46 6.27
ResNet-50 + Mixup [48] 25.6 M 22.58 6.40
ResNet-50 + Manifold Mixup [42] 25.6 M 22.50 6.21
ResNet-50 + DropBlock* [8] 25.6 M 21.87 5.98
ResNet-50 + Feature CutMix 25.6 M 21.80 6.06
ResNet-50 + CutMix 25.6 M 21.40 5.92

Table 3: ImageNet classification results based on ResNet-50
model. ‘*’ denotes results reported in the original papers.

Model # Params
Top-1

Err (%)
Top-5

Err (%)

ResNet-101 (Baseline) [12] 44.6 M 21.87 6.29
ResNet-101 + Cutout [3] 44.6 M 20.72 5.51
ResNet-101 + Mixup [48] 44.6 M 20.52 5.28
ResNet-101 + CutMix 44.6 M 20.17 5.24

ResNeXt-101 (Baseline) [45] 44.1 M 21.18 5.57
ResNeXt-101 + CutMix 44.1 M 19.47 5.03

Table 4: Impact of CutMix on ImageNet classification for
ResNet-101 and ResNext-101.

Depth [17], Cutout [3], Mixup [48], and CutMix require a
greater number of training epochs till convergence. There-
fore, we have trained all the models for 300 epochs with
initial learning rate 0.1 decayed by factor 0.1 at epochs
75, 150, and 225. The batch size is set to 256. The hyper-
parameter α is set to 1. We report the best performances of
CutMix and other baselines during training.

We briefly describe the settings for baseline augmenta-
tion schemes. We set the dropping rate of residual blocks to
0.25 for the best performance of Stochastic Depth [17]. The
mask size for Cutout [3] is set to 112×112 and the location
for dropping out is uniformly sampled. The performance of
DropBlock [8] is from the original paper and the difference
from our setting is the training epochs which is set to 270.
Manifold Mixup [42] applies Mixup operation on the ran-
domly chosen internal feature map. We have tried α = 0.5
and 1.0 for Mixup and Manifold Mixup and have chosen 1.0
which has shown better performances. It is also possible to
extend CutMix to feature-level augmentation (Feature Cut-
Mix). Feature CutMix applies CutMix at a randomly chosen
layer per minibatch as Manifold Mixup does.
Comparison against baseline augmentations: Results
are given in Table 3. We observe that CutMix achieves

https://github.com/clovaai/CutMix-PyTorch


PyramidNet-200 (α̃=240)
(# params: 26.8 M)

Top-1
Err (%)

Top-5
Err (%)

Baseline 16.45 3.69
+ StochDepth [17] 15.86 3.33
+ Label smoothing (ε=0.1) [38] 16.73 3.37
+ Cutout [3] 16.53 3.65
+ Cutout + Label smoothing (ε=0.1) 15.61 3.88
+ DropBlock [8] 15.73 3.26
+ DropBlock + Label smoothing (ε=0.1) 15.16 3.86
+ Mixup (α=0.5) [48] 15.78 4.04
+ Mixup (α=1.0) [48] 15.63 3.99
+ Manifold Mixup (α=1.0) [42] 16.14 4.07
+ Cutout + Mixup (α=1.0) 15.46 3.42
+ Cutout + Manifold Mixup (α=1.0) 15.09 3.35
+ ShakeDrop [46] 15.08 2.72
+ CutMix 14.47 2.97
+ CutMix + ShakeDrop [46] 13.81 2.29

Table 5: Comparison of state-of-the-art regularization meth-
ods on CIFAR-100.

the best result, 21.40% top-1 error, among the considered
augmentation strategies. CutMix outperforms Cutout and
Mixup, the two closest approaches to ours, by +1.53% and
+1.18%, respectively. On the feature level as well, we find
CutMix preferable to Mixup, with top-1 errors 21.78% and
22.50%, respectively.
Comparison against architectural improvements: We
have also compared improvements due to CutMix versus
architectural improvements (e.g. greater depth or additional
modules). We observe that CutMix improves the perfor-
mance by +2.28% while increased depth (ResNet-50 →
ResNet-152) boosts +1.99% and SE [15] and GE [14]
boosts +1.56% and +1.80%, respectively. Note that un-
like above architectural boosts improvements due to Cut-
Mix come at little or memory or computational time.
CutMix for Deeper Models: We have explored the perfor-
mance of CutMix for the deeper networks, ResNet-101 [12]
and ResNeXt-101 (32×4d) [45], on ImageNet. As seen in
Table 4, we observe +1.60% and +1.71% respective im-
provements in top-1 errors due to CutMix.

4.1.2 CIFAR Classification

We set mini-batch size to 64 and training epochs to 300.
The learning rate was initially set to 0.25 and decayed by
the factor of 0.1 at 150 and 225 epoch. To ensure the effec-
tiveness of the proposed method, we used a strong baseline,
PyramidNet-200 [11] with widening factor α̃ = 240. It has
26.8M parameters and achieves the state-of-the-art perfor-
mance 16.45% top-1 error on CIFAR-100.

Table 5 shows the performance comparison against other
state-of-the-art data augmentation and regularization meth-
ods. All experiments were conducted three times and the
averaged best performances during training are reported.

Model # Params
Top-1

Err (%)
Top-5

Err (%)

PyramidNet-110 (α̃ = 64) [11] 1.7 M 19.85 4.66
PyramidNet-110 + CutMix 1.7 M 17.97 3.83

ResNet-110 [12] 1.1 M 23.14 5.95
ResNet-110 + CutMix 1.1 M 20.11 4.43

Table 6: Impact of CutMix on lighter architectures on
CIFAR-100.

PyramidNet-200 (α̃=240) Top-1 Error (%)

Baseline 3.85
+ Cutout 3.10
+ Mixup (α=1.0) 3.09
+ Manifold Mixup (α=1.0) 3.15
+ CutMix 2.88

Table 7: Impact of CutMix on CIFAR-10.

Hyper-parameter settings: We set the hole size of
Cutout [3] to 16× 16. For DropBlock [8], keep prob and
block size are set to 0.9 and 4, respectively. The drop
rate for Stochastic Depth [17] is set to 0.25. For Mixup [48],
we tested the hyper-parameter αwith 0.5 and 1.0. For Mani-
fold Mixup [42], we applied Mixup operation at a randomly
chosen layer per minibatch.
Combination of regularization methods: We have eval-
uated the combination of regularization methods. Both
Cutout [3] and label smoothing [38] does not improve the
accuracy when adopted independently, but they are effec-
tive when used together. Dropblock [8], the feature-level
generalization of Cutout, is also more effective when la-
bel smoothing is also used. Mixup [48] and Manifold
Mixup [42] achieve higher accuracies when Cutout is ap-
plied on input images. The combination of Cutout and
Mixup tends to generate locally separated and mixed sam-
ples since the cropped regions have less ambiguity than
those of the vanilla Mixup. The superior performance of
Cutout and Mixup combination shows that mixing via cut-
and-paste manner is better than interpolation, as much evi-
denced by CutMix performances.

CutMix achieves 14.47% top-1 classification error on
CIFAR-100, +1.98% higher than the baseline performance
16.45%. We have achieved a new state-of-the-art perfor-
mance 13.81% by combining CutMix and ShakeDrop [46],
a regularization that adds noise on intermediate features.
CutMix for various models: Table 6 shows CutMix
also significantly improves the performance of the weaker
baseline architectures, such as PyramidNet-110 [11] and
ResNet-110.
CutMix for CIFAR-10: We have evaluated CutMix on
CIFAR-10 dataset using the same baseline and training set-
ting for CIFAR-100. The results are given in Table 7. On
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Figure 3: Impact of α and CutMix layer depth on CIFAR-
100 top-1 error.

PyramidNet-200 (α̃=240)
(# params: 26.8 M)

Top-1
Error (%)

Top-5
Error (%)

Baseline 16.45 3.69
Proposed (CutMix) 14.47 2.97

Center Gaussian CutMix 15.95 3.40
Fixed-size CutMix 14.97 3.15
One-hot CutMix 15.89 3.32
Scheduled CutMix 14.72 3.17
Complete-label CutMix 15.17 3.10

Table 8: Performance of CutMix variants on CIFAR-100.

CIFAR-10, CutMix also enhances the classification perfor-
mances by +0.97%, outperforming Mixup and Cutout per-
formances.

4.1.3 Ablation Studies

We conducted ablation study in CIFAR-100 dataset using
the same experimental settings in Section 4.1.2. We eval-
uated CutMix with α ∈ {0.1, 0.25, 0.5, 1.0, 2.0, 4.0}; the
results are given in Figure 3, left plot. For all α values con-
sidered, CutMix improves upon the baseline (16.45%). The
best performance is achieved when α = 1.0.

The performance of feature-level CutMix is given in
Figure 3, right plot. We changed the layer on which Cut-
Mix is applied, from image layer itself to higher feature
levels. We denote the index as (0=image level, 1=after
first conv-bn, 2=after layer1, 3=after layer2, 4=af-
ter layer3). CutMix achieves the best performance when
it is applied on the input images. Again, feature-level Cut-
Mix except the layer3 case improves the accuracy over
the baseline (16.45%).

We explore different design choices for CutMix. Table 8
shows the performance of CutMix variations. ‘Center Gaus-
sian CutMix’ samples the box coordinates rx, ry of Equa-
tion (2) according to the Gaussian distribution with mean
at the image center, instead of the original uniform distri-
bution. ‘Fixed-size CutMix’ fixes the size of cropping re-
gion (rw, rh) at 16 × 16 (i.e. λ = 0.75). ‘Scheduled Cut-
Mix’ linearly increases the probability to apply CutMix as

Method
CUB200-2011
Loc Acc (%)

ImageNet
Loc Acc (%)

VGG-GAP + CAM [52] 37.12 42.73
VGG-GAP + ACoL* [49] 45.92 45.83
VGG-GAP + ADL* [2] 52.36 44.92
GoogLeNet + HaS* [33] - 45.21
InceptionV3 + SPG* [50] 46.64 48.60

VGG-GAP + Mixup [48] 41.73 42.54
VGG-GAP + Cutout [3] 44.83 43.13
VGG-GAP + CutMix 52.53 43.45

ResNet-50 + CAM [52] 49.41 46.30
ResNet-50 + Mixup [48] 49.30 45.84
ResNet-50 + Cutout [3] 52.78 46.69
ResNet-50 + CutMix 54.81 47.25

Table 9: Weakly supervised object localization results on
CUB200-2011 and ImageNet. * denotes results reported in
the original papers.

training progresses, as done by [8, 17], from 0 to 1. ‘One-
hot CutMix’ decides the mixed target label by committing
to the label of greater patch portion (single one-hot label),
rather than using the combination strategy in Equation (1).
‘Complete-label CutMix’ assigns the mixed target label as
ỹ = 0.5yA + 0.5yB regardless of the combination ratio λ.
The results show that above variations lead to performance
degradation compared to the original CutMix.

4.2. Weakly Supervised Object Localization

Weakly supervised object localization (WSOL) task
aims to train the classifier to localize target objects by us-
ing only the class labels. To localize the target well, it is
important to make CNNs extract cues from full object re-
gions and not focus on small discriminant parts of the target.
Learning spatially distributed representation is thus the key
for improving performance on WSOL task. CutMix guides
a classifier to attend to broader sets of cues to make deci-
sions; we expect CutMix to improve WSOL performances
of classifiers. To measure this, we apply CutMix over base-
line WSOL models. We followed the training and evalua-
tion strategy of existing WSOL methods [49, 50, 2] with
VGG-GAP and ResNet-50 as the base architectures. The
quantitative and qualitative results are given in Table 9 and
Figure 4, respectively. Full implementation details are in
Appendix B.
Comparison against Mixup and Cutout: CutMix outper-
forms Mixup [48] on localization accuracies by +5.51%
and +1.41% on CUB200-2011 and ImageNet, respectively.
Mixup degrades the localization accuracy of the baseline
model; it tends to make a classifier focus on small regions
as shown in Figure 4. As we have hypothesized in Sec-



Backbone
Network

ImageNet Cls
Top-1 Error (%)

Detection Image Captioning
SSD [24]

(mAP)
Faster-RCNN [30]

(mAP)
NIC [43]
(BLEU-1)

NIC [43]
(BLEU-4)

ResNet-50 (Baseline) 23.68 76.7 (+0.0) 75.6 (+0.0) 61.4 (+0.0) 22.9 (+0.0)
Mixup-trained 22.58 76.6 (-0.1) 73.9 (-1.7) 61.6 (+0.2) 23.2 (+0.3)
Cutout-trained 22.93 76.8 (+0.1) 75.0 (-0.6) 63.0 (+1.6) 24.0 (+1.1)
CutMix-trained 21.40 77.6 (+0.9) 76.7 (+1.1) 64.2 (+2.8) 24.9 (+2.0)

Table 10: Impact of CutMix on transfer learning of pretrained model to other tasks, object detection and image captioning.

Baseline

Mixup

CutMix

Cutout

Figure 4: Qualitative comparison of the baseline (ResNet-
50), Mixup, Cutout, and CutMix for weakly supervised ob-
ject localization task on CUB-200-2011 dataset. Ground
truth and predicted bounding boxes are denoted as red and
green, respectively.

tion 3.2, more ambiguity in Mixup samples make a classifier
focus on even more discriminative parts of objects, leading
to decreased localization accuracies. Although Cutout [3]
improves the accuracy over the baseline, it is outperformed
by CutMix: +2.03% and +0.56% on CUB200-2011 and
ImageNet, respectively.

CutMix also achieves comparable localization accura-
cies on CUB200-2011 and ImageNet, even when com-
pared against the dedicated state-of-the-art WSOL meth-
ods [52, 33, 49, 50, 2] that focus on learning spatially dis-
persed representations.

4.3. Transfer Learning of Pretrained Model

ImageNet pre-training is de-facto standard practice for
many visual recognition tasks. We examine whether Cut-
Mix pre-trained models leads to better performances in cer-
tain downstream tasks based on ImageNet pre-trained mod-
els. As CutMix has shown superiority in localizing less dis-
criminative object parts, we would expect it to lead to boosts
in certain recognition tasks with localization elements, such
as object detection and image captioning. We evaluate the
boost from CutMix on those tasks by replacing the back-
bone network initialization with other ImageNet pre-trained
models using Mixup [48], Cutout [3], and CutMix. ResNet-
50 is used as the baseline architecture in this section.

Transferring to Pascal VOC object detection: Two pop-
ular detection models, SSD [24] and Faster RCNN [30], are
considered. Originally the two methods have utilized VGG-
16 as backbones, but we have changed it to ResNet-50. The
ResNet-50 backbone is initialized with various ImageNet-
pretrained models and then fine-tuned on Pascal VOC 2007
and 2012 [6] trainval data. Models are evaluated on
VOC 2007 test data using the mAP metric. We follow the
fine-tuning strategy of the original methods [24, 30]; imple-
mentation details are in Appendix C. Results are shown in
Table 10. Pre-training with Cutout and Mixup has failed to
improve the object detection performance over the vanilla
pre-trained model. However, the pre-training with CutMix
improves the performance of both SSD and Faster-RCNN.
Stronger localizability of the CutMix pre-trained models
leads to better detection performances.
Transferring to MS-COCO image captioning: We used

Neural Image Caption (NIC) [43] as the base model for im-
age captioning experiments. We have changed the backbone
network of encoder from GoogLeNet [43] to ResNet-50.
The backbone network is initialized with various ImageNet
pre-trained models, and then trained and evaluated on MS-
COCO dataset [23]. Implementation details and evaluation
metrics (METEOR, CIDER, etc.) are in Appendix D. Ta-
ble 10 shows the results. CutMix outperforms Mixup and
Cutout in both BLEU1 and BLEU4 metrics. Simply replac-
ing backbone network with our CutMix pre-trained model
gives performance gains for object detection and image cap-
tioning tasks at no extra cost.

4.4. Robustness and Uncertainty

Many researches have shown that deep models are eas-
ily fooled by small and unrecognizable perturbations on the
input images, a phenomenon referred to as adversarial at-
tacks [9, 39]. One straightforward way to enhance robust-
ness and uncertainty is an input augmentation by generat-
ing unseen samples [26]. We evaluate robustness and un-
certainty improvements due to input augmentation methods
including Mixup, Cutout, and CutMix.
Robustness: We evaluate the robustness of the trained
models to adversarial samples, occluded samples, and
in-between class samples. We use ImageNet pre-trained
ResNet-50 models with same setting as in Section 4.1.1.

Fast Gradient Sign Method (FGSM) [9] is used to gen-
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Figure 5: Robustness experiments on the ImageNet validation set.

Baseline Mixup Cutout CutMix

Top-1 Acc (%) 8.2 24.4 11.5 31.0

Table 11: Top-1 accuracy after FGSM white-box attack on
ImageNet validation set.

erate adversarial perturbations and we assume that the ad-
versary has full information of the models (white-box at-
tack). We report top-1 accuracies after attack on ImageNet
validation set in Table 11. CutMix significantly improves
the robustness to adversarial attacks compared to other aug-
mentation methods.

For occlusion experiments, we generate occluded sam-
ples in two ways: center occlusion by filling zeros in a cen-
ter hole and boundary occlusion by filling zeros outside of
the hole. In Figure 5a, we measure the top-1 error by vary-
ing the hole size from 0 to 224. For both occlusion scenar-
ios, Cutout and CutMix achieve significant improvements
in robustness while Mixup only marginally improves it. In-
terestingly, CutMix almost achieves a comparable perfor-
mance as Cutout even though CutMix has not observed any
occluded sample during training unlike Cutout.

Finally, we evaluate the top-1 error of Mixup and CutMix
in-between samples. The probability to predict neither two
classes by varying the combination ratio λ is illustrated in
Figure 5b. We randomly select 50, 000 in-between samples
in ImageNet validation set. In both experiments, Mixup and
CutMix improve the performance while improvements due
to Cutout are almost negligible. Similarly to the previous
occlusion experiments, CutMix even improves the robust-
ness to the unseen Mixup in-between class samples.
Uncertainty: We measure the performance of the out-of-
distribution (OOD) detectors proposed by [13] which de-
termines whether the sample is in- or out-of-distribution
by score thresholding. We use PyramidNet-200 trained on
CIFAR-100 datasets with same setting as in Section 4.1.2.
In Table 12, we report the averaged OOD detection perfor-
mances against seven out-of-distribution samples from [13,
22], including TinyImageNet, LSUN [47], uniform noise,

Method TNR at TPR 95% AUROC Detection Acc.

Baseline 26.3 (+0) 87.3 (+0) 82.0 (+0)
Mixup 11.8 (-14.5) 49.3 (-38.0) 60.9 (-21.0)
Cutout 18.8 (-7.5) 68.7 (-18.6) 71.3 (-10.7)
CutMix 69.0 (+42.7) 94.4 (+7.1) 89.1 (+7.1)

Table 12: Out-of-distribution (OOD) detection results with
CIFAR-100 trained models. Results are averaged on seven
datasets. All numbers are in percents; higher is better.

Gaussian noise, etc. More results are illustrated in Ap-
pendix E. Mixup and Cutout augmentations aggravate the
over-confidence of the base networks. Meanwhile, CutMix
significantly alleviates the over-confidence of the model.

5. Conclusion
We have introduced CutMix for training CNNs with

strong classification and localization ability. CutMix is easy
to implement and has no computational overhead, while be-
ing surprisingly effective on various tasks. On ImageNet
classification, applying CutMix to ResNet-50 and ResNet-
101 brings +2.28% and +1.70% top-1 accuracy improve-
ments. On CIFAR classification, CutMix significantly im-
proves the performance of baseline by +1.98% leads to
the state-of-the-art top-1 error 14.47%. On weakly super-
vised object localization (WSOL), CutMix substantially en-
hances the localization accuracy and has achieved compara-
ble localization performances as the state-of-the-art WSOL
methods. Furthermore, simply using CutMix-ImageNet-
pretrained model as the initialized backbone of the object
detection and image captioning brings overall performance
improvements. Finally, we have shown that CutMix results
in improvements in robustness and uncertainty of image
classifiers over the vanilla model as well as other regular-
ized models.
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A. CutMix Algorithm

We present the code-level description of CutMix algo-
rithm in Algorithm A1. N, C, and K denote the size of
minibatch, channel size of input image, and the number of
classes. First, CutMix shuffles the order of the minibatch
input and target along the first axis of the tensors. And the
lambda and the cropping region (x1,x2,y1,y2) are sampled.
Then, we mix the input and input s by replacing the crop-
ping region of input to the region of input s. The target label
is also mixed by interpolating method.

Note that CutMix is easy to implement with few lines
(from line 4 to line 15), so is very practical algorithm giving
significant impact on a wide range of tasks.

B. Weakly-supervised Object Localization

We describe the training and evaluation procedure of
weakly-supervised object localization in detail.
Network modification: Basically weakly-supervised ob-
ject localization (WSOL) has the same training strategy as
image classification does. Training WSOL is starting from
ImageNet-pretrained model. From the base network struc-
tures, VGG-16 and ResNet-50 [12], WSOL takes larger spa-
tial size of feature map 14×14 whereas the original models
has 7× 7. For VGG network, we utilize VGG-GAP, which
is a modified VGG-16 introduced in [52]. For ResNet-50,
we modified the final residual block (layer4) to have no
stride (= 1), which originally has stride 2.

Since the network is modified and the target dataset
could be different from ImageNet [31], the last fully-
connected layer is randomly initialized with the final out-
put dimension of 200 and 1000 for CUB200-2011 [44] and
ImageNet, respectively.
Input image transformation: For fair comparison, we
used the same data augmentation strategy except Mixup,
Cutout, and CutMix as the state-of-the-art WSOL meth-
ods do [33, 49]. In training, the input image is resized to
256 × 256 size and randomly cropped 224 × 224 size im-
ages are used to train network. In testing, the input image is
resized to 256× 256, cropped at center with 224× 224 size
and used to validate the network, which called single crop
strategy.
Estimating bounding box: We utilize class activation
mapping (CAM) [52] to estimate the bounding box of an
object. First we compute CAM of an image, and next, we
decide the foreground region of the image by binarizing the
CAM with a specific threshold. The region with intensity
over the threshold is set to 1, otherwise to 0. We use the
threshold as a specific rate σ of the maximum intensity of
the CAM. We set σ to 0.15 for all our experiments. From
the binarized foreground map, the tightest box which can
cover the largest connected region in the foreground map is
selected to the bounding box for WSOL.

Evaluation metric: To measure the localization accuracy
of models, we report top-1 localization accuracy (Loc),
which is used for ImageNet localization challenge [31]. For
top-1 localization accuracy, intersection-over-union (IoU)
between the estimated bounding box and ground truth posi-
tion is larger than 0.5, and, at the same time, the estimated
class label should be correct. Otherwise, top-1 localization
accuracy treats the estimation was wrong.

B.1. CUB200-2011

CUB-200-2011 dataset [44] contains over 11 K images
with 200 categories of birds. We set the number of train-
ing epochs to 600. For ResNet-50, the learning rate for the
last fully-connected layer and the other were set to 0.01 and
0.001, respectively. For VGG network, the learning rate for
the last fully-connected layer and the other were set to 0.001
and 0.0001, respectively. The learning rate is decaying by
the factor of 0.1 at every 150 epochs. We used SGD op-
timizer, and the minibatch size, momentum, weight decay
were set to 32, 0.9, and 0.0001.

B.2. ImageNet dataset

ImageNet-1K [31] is a large-scale dataset for general ob-
jects consisting of 13 M training samples and 50 K valida-
tion samples. We set the number of training epochs to 20.
The learning rate for the last fully-connected layer and the
other were set to 0.1 and 0.01, respectively. The learning
rate is decaying by the factor of 0.1 at every 6 epochs. We
used SGD optimizer, and the minibatch size, momentum,
weight decay were set to 256, 0.9, and 0.0001.

C. Transfer Learning to Object Detection
We evaluate the models on the Pascal VOC 2007 detec-

tion benchmark [6] with 5 K test images over 20 ob-
ject categories. For training, we use both VOC2007 and
VOC2012 trainval (VOC07+12).
Finetuning on SSD2 [24]: The input image is resized to
300×300 (SSD300) and we used the basic training strategy
of the original paper such as data augmentation, prior boxes,
and extra layers. Since the backbone network is changed
from VGG16 to ResNet-50, the pooling location conv4 3
of VGG16 is modified to the output of layer2 of ResNet-
50. For training, we set the batch size, learning rate, and
training iterations to 32, 0.001, and 120 K, respectively. The
learning rate is decayed by the factor of 0.1 at 80 K and 100
K iterations.
Finetuning on Faster-RCNN3 [30]: Faster-RCNN takes
fully-convolutional structure, so we only modify the back-
bone from VGG16 to ResNet-50. The batch size, learning
rate, training iterations are set to 8, 0.01, and 120 K. The

2https://github.com/amdegroot/ssd.pytorch
3https://github.com/jwyang/faster-rcnn.pytorch



Algorithm A1 Pseudo-code of CutMix

1: for each iteration do
2: input, target = get minibatch(dataset) . input is N×C×W×H size tensor, target is N×K size tensor.
3: if mode == training then
4: input s, target s = shuffle minibatch(input, target) . CutMix starts here.
5: lambda = Unif(0,1)
6: r x = Unif(0,W)
7: r y = Unif(0,H)
8: r w = Sqrt(1 - lambda)
9: r h = Sqrt(1 - lambda)

10: x1 = Round(Clip(r x - r w / 2, min=0))
11: x2 = Round(Clip(r x + r w / 2, max=W))
12: y1 = Round(Clip(r y - r h / 2, min=0))
13: y2 = Round(Clip(r y + r h / 2, min=H))
14: input[:, :, x1:x2, y1:y2] = input s[:, :, x1:x2, y1:y2]
15: lambda = 1 - (x2-x1)*(y2-y1)/(W*H) . Adjust lambda to the exact area ratio.
16: target = lambda * target + (1 - lambda) * target s . CutMix ends.
17: end if
18: output = model forward(input)
19: loss = compute loss(output, target)
20: model update()
21: end for

learning rate is decayed by the factor of 0.1 at 100 K itera-
tions.

D. Transfer Learning to Image Captioning
MS-COCO dataset [23] contains 120 K trainval

images and 40 K test images. From the base model
NIC4 [43], the backbone model is changed from
GoogLeNet to ResNet-50. For training, we set batch size,
learning rate, and training epochs to 20, 0.001, and 100, re-
spectively. For evaluation, the beam size is set to 20 for all
the experiments. Image captioning results with various met-
rics are shown in Table A1.

E. Robustness and Uncertainty
In this section, we describe the details of the experimen-

tal setting and evaluation methods.

E.1. Robustness

We evaluate the model robustness to adversarial per-
turbations, occlusion and in-between samples using Ima-
geNet trained models. For the base models, we use ResNet-
50 structure and follow the settings in Section 4.1.1. For
comparison, we use ResNet-50 trained without any addi-
tional regularization or augmentation techniques, ResNet-
50 trained by Mixup strategy, ResNet-50 trained by Cutout
strategy and ResNet-50 trained by our proposed CutMix
strategy.

4https://github.com/stevehuanghe/image captioning

Fast Gradient Sign Method (FGSM): We employ Fast
Gradient Sign Method (FGSM) [9] to generate adversarial
samples. For the given image x, the ground truth label y and
the noise size ε, FGSM generates an adversarial sample as
the following

x̂ = x+ ε sign (∇xL(θ, x, y)) , (3)

where L(θ, x, y) denotes a loss function, for example, cross
entropy function. In our experiments, we set the noise scale
ε = 8/255.
Occlusion: For the given hole size s, we make a hole with
width and height equals to s in the center of the image. For
center occluded samples, we zeroed-out inside of the hole
and for boundary occluded samples, we zeroed-out outside
of the hole. In our experiments, we test the top-1 ImageNet
validation accuracy of the models with varying hole size
from 0 to 224.
In-between class samples: To generate in-between class
samples, we first sample 50, 000 pairs of images from the
ImageNet validation set. For generating Mixup samples, we
generate a sample x from the selected pair xA and xB by
x = λxA + (1 − λ)xB . We report the top-1 accuracy on
the Mixup samples by varying λ from 0 to 1. To generate
CutMix in-between samples, we employ the center mask
instead of the random mask. We follow the hole generation
process used in the occlusion experiments. We evaluate the
top-1 accuracy on the CutMix samples by varing hole size
s from 0 to 224.



BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDER

ResNet-50 (Baseline) 61.4 43.8 31.4 22.9 22.8 44.7 71.2
ResNet-50 + Mixup 61.6 44.1 31.6 23.2 22.9 47.9 72.2
ResNet-50 + Cutout 63.0 45.3 32.6 24.0 22.6 48.2 74.1
ResNet-50 + CutMix 64.2 46.3 33.6 24.9 23.1 49.0 77.6

Table A1: Image captioning results on MS-COCO dataset.

Method TNR at TPR 95% AUROC Detection Acc. TNR at TPR 95% AUROC Detection Acc.

TinyImageNet TinyImageNet (resize)

Baseline 43.0 (0.0) 88.9 (0.0) 81.3 (0.0) 29.8 (0.0) 84.2 (0.0) 77.0 (0.0)
Mixup 22.6 (-20.4) 71.6 (-17.3) 69.8 (-11.5) 12.3 (-17.5) 56.8 (-27.4) 61.0 (-16.0)
Cutout 30.5 (-12.5) 85.6 (-3.3) 79.0 (-2.3) 22.0 (-7.8) 82.8 (-1.4) 77.1 (+0.1)
CutMix 57.1 (+14.1) 92.4 (+3.5) 85.0 (+3.7) 55.4 (+25.6) 91.9 (+7.7) 84.5 (+7.5)

LSUN (crop) LSUN (resize)

Baseline 34.6 (0.0) 86.5 (0.0) 79.5 (0.0) 34.3 (0.0) 86.4 (0.0) 79.0 (0.0)
Mixup 22.9 (-11.7) 76.3 (-10.2) 72.3 (-7.2) 13.0 (-21.3) 59.0 (-27.4) 61.8 (-17.2)
Cutout 33.2 (-1.4) 85.7 (-0.8) 78.5 (-1.0) 23.7 (-10.6) 84.0 (-2.4) 78.4 (-0.6)
CutMix 47.6 (+13.0) 90.3 (+3.8) 82.8 (+3.3) 62.8 (+28.5) 93.7 (+7.3) 86.7 (+7.7)

iSUN

Baseline 32.0 (0.0) 85.1 (0.0 77.8 (0.0)
Mixup 11.8 (-20.2) 57.0 (-28.1) 61.0 (-16.8)
Cutout 22.2 (-9.8) 82.8 (-2.3) 76.8 (-1.0)
CutMix 60.1 (+28.1) 93.0 (+7.9) 85.7 (+7.9)

Uniform Gaussian

Baseline 0.0 (0.0) 89.2 (0.0) 89.2 (0.0) 10.4 (0.0) 90.7 (0.0) 89.9 (0.0)
Mixup 0.0 (0.0) 0.8 (-88.4) 50.0 (-39.2) 0.0 (-10.4) 23.4 (-67.3) 50.5 (-39.4)
Cutout 0.0 (0.0) 35.6 (-53.6) 59.1 (-30.1) 0.0 (-10.4) 24.3 (-66.4) 50.0 (-39.9)
CutMix 100.0 (+100.0) 99.8 (+10.6) 99.7 (+10.5) 100.0 (+89.6) 99.7 (+9.0) 99.0 (+9.1)

Table A2: Out-of-distribution (OOD) detection results on TinyImageNet, LSUN, iSUN, Gaussian noise and Uniform noise
using CIFAR-100 trained models. All numbers are in percents; higher is better.

E.2. Uncertainty

Deep neural networks are often overconfident in their
predictions. For example, deep neural networks produce
high confidence number even for random noise [13]. One
standard benchmark to evaluate the overconfidence of the
network is Out-of-distribution (OOD) detection proposed
by [13]. The authors proposed a threshold-baed detector
which solves the binary classification task by classifying
in-distribution and out-of-distribution using the prediction
of the given network. Recently, a number of reserchs are
proposed to enhance the performance of the baseline de-
tector [22, 21] but in this paper, we follow only the baseline
detector algorithm without any input enhancement and tem-
perature scaling [22].

Setup: We compare the OOD detector performance using
CIFAR-100 trained models described in Section 4.1.2. For
comparison, we use PyramidNet-200 model without any
regularization method, PyramidNet-200 model with Mixup,
PyramidNet-200 model with Cutout and PyramidNet-200
model with our proposed CutMix.

Evaluation Metrics and Out-of-distributions: In this
work, we follow the experimental setting used in [13, 22].
To measure the performance of the OOD detector, we report
the true negative rate (TNR) at 95% true positive rate (TPR),
the area under the receiver operating characteristic curve
(AUROC) and detection accuracy of each OOD detector.
We use seven datasets for out-of-distribution: TinyIma-
geNet (crop), TinyImageNet (resize), LSUN [47] (crop),
LSUN (resize), iSUN, Uniform noise and Gaussian noise.



Results: We report OOD detector performance to seven
OODs in Table A2. Overall, CutMix outperforms baseline,
Mixup and Cutout. Moreover, we find that even though
Mixup and Cutout outperform the classification perfor-
mance, Mixup and Cutout largely degenerate the baseline
detector performance. Especially, for Uniform noise and
Gaussian noise, Mixup and Cutout seriously impair the
baseline performance while CutMix dramatically improves
the performance. From the experiments, we observe that our
proposed CutMix enhances the OOD detector performance
while Mixup and Cutout produce more overconfident pre-
dictions to OOD samples than the baseline.


