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Abstract

State-of-the-art video action classifiers often suffer from
overfitting. They tend to be biased towards specific objects
and scene cues, rather than the foreground action content,
leading to sub-optimal generalization performances. Re-
cent data augmentation strategies have been reported to
address the overfitting problems in static image classifiers.
Despite the effectiveness on the static image classifiers, data
augmentation has rarely been studied for videos. For the
first time in the field, we systematically analyze the effi-
cacy of various data augmentation strategies on the video
classification task. We then propose a powerful augmenta-
tion strategy VideoMix. VideoMix creates a new training
video by inserting a video cuboid into another video. The
ground truth labels are mixed proportionally to the number
of voxels from each video. We show that VideoMix lets a
model learn beyond the object and scene biases and extract
more robust cues for action recognition. VideoMix consis-
tently outperforms other augmentation baselines on Kinet-
ics and the challenging Something-Something-V2 bench-
marks. It also improves the weakly-supervised action local-
ization performance on THUMOS’14. VideoMix pretrained
models exhibit improved accuracies on the video detection
task (AVA).

1. Introduction
Video action classification models have achieved re-

markable performance improvements in recent years. The
main innovations have stemmed from the introduction of
large-scale video dataset like Kinetics [17] and Sports-
1M [15] and the development of powerful network architec-
tures using 3D convolutional neural networks (3D CNNs).

As the architecture of video models become deeper and
more complex, overfitting and the resulting loss of gener-
alizability become greater concerns. For example, models
trained on large-scale video dataset still suffer from the ob-
ject and scene biases: models rely heavily on specific dis-
criminative objects and scene elements [26, 21, 37]. This

has led to sub-optimal generalization performances and the
decrease in localization abilities of video action classifiers.
Ideally, a model should extract cues for recognition from di-
verse sources to enhance generalizability and the robustness
to missing features.

The above problems are already identified and studied
in static image recognition tasks, especially in the context
of modern models based on 2D CNN architectures. For
2D image recognition, data augmentation has proven to be
effective, while not requiring extra annotation or training
time [29, 3, 39].

In contrast, there is a lack of extensive studies on the
data augmentation strategies for video recognition tasks.
In this paper, we examine the efficacy of image-domain
data augmentation strategies on video data, especially the
ones based on feature erasing that are known to improve
model robustness and generalizability [6, 41]. In particular,
we consider a generalization of CutMix [39] to video se-
quences. We show experiments to decide which axis (spatial
or temporal) CutMix needs to be extended for the best per-
formance on video sequences. As a result of our analysis,
we introduce the VideoMix augmentation strategy. A new
training video sample is constructed by cutting and pasting a
random video cuboid patch from one video to the other. The
ground truth label for this video is a volume-proportional
combination of the source video labels.

We show the effectiveness of VideoMix with extensive
evaluations on various 3D CNN architectures, datasets, and
tasks. Table 1 summarizes the improvements by VideoMix.
VideoMix consistently improves video classification mod-
els without any additional parameter and a significant
amount of computation.

2. Related Works
We briefly discuss the related works of the video classi-

fication task and the data augmentation in this section.

2.1. Video Classification

The key difference between video and image classifica-
tions is that the former must capture temporal information.
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Task Action recognition Localization Detection

Dataset
Kinetics-400

(acc. %)
Mini-Kinetics

(acc. %)
Something-V2

(acc. %)
THUMOS’14

(mAP)
AVA

(mAP)

Model SlowOnly-50 SlowFast-50 SlowFast-50 I3D T-CAM SlowFast-50

Baseline 73.6 79.5 61.5 17.8 23.2
VideoMix 74.9 81.9 62.3 19.3 24.9
Improve. ∆ (+1.3) (+2.4) (+0.8) (+1.5) (+1.7)

Table 1: Overview of VideoMix performances. We compare our VideoMix against the vanilla training strategy (Baseline)
on various tasks. VideoMix consistently improves action recognition, localization, and detection performances without any
added parameter or a significant amount of computational overhead.

Some prior works [28, 8, 2] have extracted temporal cues
explicitly (e.g. via optical flow). With the development of
deep learning and large-scale video datasets [17, 16], 3D
convolutional neural networks (3D CNNs) [33, 11, 2, 34]
and non-local modules [36] are proposed to learn the tem-
poral cues automatically. Recently proposed SlowFast net-
work [7] and CSN [34] show the state-of-the-art perfor-
mances on the video classification using 3D CNNs. Slow-
Fast proposed a dual-branch architecture to combine a slow
path for static spatial features and a fast path for dynamic
motion features, and CSN utilizes depth-wise convolution
for lightweight 3D CNN architecture. While the advances
in video classification have been focused on the architec-
tural axis, we explore the orthogonal data axis, which is
seldom explored in the context of video recognition tasks.
We show the effectiveness of VideoMix by conducting ex-
periments on top of the state-of-the-art SlowFast and CSN
networks.

2.2. Data Augmentation

Data augmentation for image classification. There are
many augmentation strategies for static image classification
tasks. Horizontal flipping, random resizing, and cropping
have been used in training ImageNet classifiers and are now
considered the standard set of augmentation strategies [32].
There have been regional dropout methods [6, 41] which
remove random regions of an image to enhance robust-
ness and generalization. Other single-image augmentation
strategies include RandAugment [5] and AutoAugment [4].
They consider the combination of extensive pixel-level im-
age augmentation types, such as rotation, shear, translation,
and color jittering. RandAugment and AutoAugment train
classifiers with above operations via random selection and
learned policy, respectively. Augmentation strategies that
combine more than one image include Mixup [40] and Cut-
Mix [39]. Mixup averages the RGB values of two images
and the ground truth labels to create new samples. Cut-
Mix [39] has improved upon regional dropout by filling
in image patches from other images in the dropped-out re-

gion, thereby maximizing the pixel efficiency during train-
ing. The labels are mixed among the source images as in
Mixup. We discuss and experiment with the above static-
image augmentation strategies on video classification tasks
in our analysis.

Data augmentation for video classification. There do
exist a few attempts to apply data augmentation strategies
on videos. On the spatial side, the standard single-image
augmentation strategies for image classification have been
considered: horizontal flipping and random cropping [35].
Along the temporal axis, a widely-used augmentation strat-
egy is to randomly sub-sample a shorter video clip from
the full sequence. However, there has been an overall lack
of extensive studies on video augmentation methods. This
work contributes the first studies on the impact of video aug-
mentation strategies on the generalization, localization, and
transfer learning capabilities.

3. VideoMix
In this section, we analyze existing data augmentations,

describe the VideoMix algorithm, and discuss the effective-
ness of VideoMix.

3.1. Revisiting Data Augmentation Techniques

We review existing data augmentation methods that par-
tially remove regions in an image [6], add pixel-level
noises [4, 5], or manipulate both input pixels and la-
bels [40, 39]. We first evaluate their effectiveness by simply
extending the two-dimensional methods to the three spatio-
temporal dimensions.

Table 2 compares the augmentation strategies includ-
ing Mixup [40], RandAugment [5], Cutout [6], and Cut-
Mix [39]. It is straightforward to extend Mixup and Ran-
dAugment to videos: they apply global operations over the
pixels. Mixup averages the RGB values of two images and
RandAugment applies rotation, shear, and uniform pertur-
bations on the images. We apply the same operation over the
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Methods top1 top5

Vanilla 75.2 91.7
Mixup [40] 77.0 93.1
RandAugment [5] 75.6 92.2
Cutout [6] 76.1 92.6
CutMix [39] 76.7 92.9

VideoMix 77.6 93.5

Table 2: VideoMix vs existing data augmentation tech-
niques. The compared baselines are originally proposed
for the image classification tasks. We extend them from
two spatial dimensions to three spatio-temporal dimensions.
SlowOnly-34 (8×8) network and Mini-Kinetics dataset are
used.

spatio-temporal frames. For Cutout and CutMix, we choose
the full spatio-temporal extension where sub-cuboids in
videos are randomly selected to be removed or replaced.
We set the hyperparameter α of Mixup and CutMix to 1.0,
the mask size for Cutout to 112 × 112, the magnitudes
M for RandAugment to 9. Table 2 shows that even the
naive extension of the baselines lead to improvements in
video classification against the vanilla model. For example,
Mixup achieves 77.0% top-1 accuracy on Mini-Kinetics,
an +1.8% improvement against the vanilla SlowOnly-34
(8× 8) model.

In the rest of the section, we seek ways to boost the
video recognition performances further by studying the de-
sign choices in augmentation strategies in greater depth.

3.2. VideoMix Algorithm

We introduce the VideoMix algorithm. Let x ∈
RT×W×H be a video sequence, where T ,W , andH are the
number of frames, width, and height of video sequences,
respectively1. Let y be the corresponding ground truth la-
bel, represented as a one-hot vector. VideoMix generates a
new training sample (x̃, ỹ) by combining two training sam-
ples (xA, yA) and (xB , yB). The generated (x̃, ỹ) is used
for training the model with its original loss function.

More precisely, VideoMix first defines a binary tensor
mask M ∈ {0, 1}T×W×H signifying the cut-and-paste lo-
cations in two video tensors. The new video is generated by
the below procedure:

x̃ = M� xA + (1−M)� xB
ỹ = λMyA + (1− λM)yB

(1)

where � is the element-wise multiplication and λM :=
1

TWH

∑
t,w,h Mt,w,h denotes the proportion of the volume

occupied by M.

1We omit the input channel dimension (3 for RGB) for simplicity.
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Figure 1: VideoMix variants. Illustrations of Spatial (S-
), Temporal (T-), and Spatio-temporal (ST-) VideoMix. We
omit the channel (color) dimension for clarity. A sub-cuboid
of Video B (blue cube) is inserted into Video A (white
cube).

Methods top1 top5

Spatial VideoMix 77.6 93.5
Temporal VideoMix 75.6 92.5
Spatio-temporal VideoMix 76.7 92.9

Table 3: Performances of VideoMix variants. Per-
formances of Spatial, Temporal, and Spatio-temporal
VideoMix. SlowOnly-34 (8×8) network and Mini-Kinetics
dataset are used.

The binary tensor mask M is decided by drawing the 3D
cuboid coordinates C = (t1, t2, w1, w2, h1, h2) at random.
More specifically,

Mt,w,h :=

{
1, if t1 ≤ t ≤ t2, w1 ≤ w ≤ w2, and h1 ≤ h ≤ h2

0, otherwise
(2)

We will investigate the design choices for the random selec-
tion of coordinates in the next part.

3.3. Investigation of spatial and temporal axes for
VideoMix

We identify three types of VideoMix: Temporal, Spa-
tial, and Spatio-temporal VideoMix. Temporal VideoMix
samples the cuboid coordinates C only along the tem-
poral axis ((t1, t2) are sampled) and fixes spatial coordi-
nates at (w1, w2, h0, h1) = (0,W, 0, H). Spatial VideoMix
samples the spatial coordinates (w1, w2, h1, h2), while fix-
ing (t1, t2) = (0, T ). Spatio-temporal VideoMix samples
all the coordinates (t1, t2, w1, w2, h1, h2). The VideoMix
variants are illustrated in Figure 1. Note that the Spatio-
temporal VideoMix is the same as the CutMix in Table 2.

Table 3 compares the performances of the VideoMix
variants. Spatial VideoMix is the best among them. We hy-
pothesize that the video sub-cuboid must secure a sufficient
number of frames to represent the semantic information for
the video category. Temporal VideoMix or Spatio-temporal
VideoMix is limited in terms of the semantic content in cut
and pasted video cuboids. Spatial VideoMix, on the con-
trary, retains the full temporal semantics.
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Figure 2: Training curves. Validation loss (left) and top-1
accuracy (right) plots for Mini-Kinetics action recognition.
VideoMix achieves lower validation loss and higher top-1
accuracy than the vanilla model.

Based on this observation, we define Spatial VideoMix
as our default VideoMix setting for video classification task.
The random coordinate selection strategy follows that of
CutMix [39]. The spatial ratio λ is sampled from the Beta
distribution Beta(α,α), where we set α := 12. The cen-
ter coordinates (wc, hc) are sampled from Unif(0,W ) ×
Unif(0, H). Other cuboid endpoints are determined by

w1 = wc −
W
√
λ

2
w2 = wc +

W
√
λ

2

h1 = hc −
H
√
λ

2
h2 = hc +

H
√
λ

2

(3)

and fixed (t1, t2) = (0, T ). Codes for VideoMix variants
are presented in Appendix A.

VideoMix for temporal localization. Under certain ap-
plication scenarios, it is difficult to directly manipulate the
input videos. For example, features may have already been
extracted from the original frames and the raw frames are
unavailable because of the storage limits or legal issues [1].
As we will cover in the experiments of temporal action lo-
calization, Temporal VideoMix is a good alternative that
improves the localization ability of a video classifier.

3.4. Discussion

Effect on preventing overfitting. To see the effect of
VideoMix on preventing overfitting and stabilizing the
training process, we compare validation loss and valida-
tion accuracy of SlowOnly-34 models during the training
over Mini-Kinetics action recognition dataset in Figure 2.
We confirm that VideoMix enables video models to obtain
lower validation loss and higher validation accuracy than
the baseline. After about 200 training epochs, the baseline
performance saturates and the loss does not decrease fur-
ther. Applying VideoMix lets the model overcome the bar-

2When α = 1, it is the uniform distribution Unif(0, 1).

rier and improve further beyond this point. The training
samples generated by VideoMix allow the video classifiers
to generalize better.

What does the model learn with VideoMix? We expect
VideoMix to let an action classifier simultaneously recog-
nize multiple actions present in the mixed videos. To ver-
ify that this is achieved, we visualize the spatio-temporal
attention of a video on the synthetic video generated by
VideoMix with the class activation maps (CAM) [42]. We
use a Kinetics-400 pre-trained SlowOnly-50 model. We
extend the original CAM proposed for static images to
its spatio-temporal version that generates the T sequen-
tial score maps. Detail description of spatio-temporal CAM
and more examples are in Appendix A. Figure 3 shows
VideoMix samples and corresponding class activation maps
with respect to the two action classes, “playing harmonica”
and “passing American football”. The CAM results show
that VideoMix guides a model to see multiple actions at
once (e.g., the CAM for “playing harmonica” highlights the
player’s mouth and hands, and the CAM for “passing Amer-
ican football” emphasizes the kid’s hands and the football
object). Furthermore, VideoMix reduces scene contexts of
videos, as the background scene of “passing American foot-
ball” are partially removed, and also hides some object cues,
as the football of “passing American football” and the hands
holding a harmonica of “playing harmonica” are blocked in
some frames, which leads to learning more robust and gen-
eralized cues beyond the object and scene for action recog-
nition.

4. Experiments

We evaluate VideoMix in terms of the improved gen-
eralization performances as well as the transfer-learning
performances of VideoMix pre-trained models on multi-
ple tasks. We first verify the effect of VideoMix on video
classification tasks: Kinetics action recognition [17] and
Something-Something-V2. We show the temporal action lo-
calization performance via weakly-supervised temporal ac-
tion localization experiments. Finally, VideoMix is evalu-
ated in terms of the transfer-learning performances on the
video action detection task. We also provide additional ex-
periments on HMDB-51 [19] and UCF-101 [30] action
recognition benchmarks in Appendix B. All experiments
were implemented and evaluated on NAVER Smart Ma-
chine Learning (NSML) [18] platform with PyTorch [23]

4.1. Kinetics Action Recognition

Dataset. Kinetics-400 [17] is a widely used large-scale
action recognition benchmark consisting of 240k training
videos and 20k validation videos in 400 human action
classes. The performances are evaluated with the top-1 and
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Figure 3: Class activation mapping (CAM) on VideoMix sample. We show the spatio-temporal CAM [42] score maps on
a VideoMix sample. It is a combination of the “playing harmonica” and “passing American football” videos. The CAM score
maps are visualized with respect to the two action classes separately.

top-5 accuracies. Note that about 10% of the Kinetics-400
videos are not available on YouTube to be downloaded. It
is not possible to reproduce the exact accuracies reported
in the original paper; we train the action classifier over the
available subset and treat this result as the baseline.

Training and evaluation. We follow the original training
recipes of the baseline architectures in [7]. We train mod-
els from scratch using the stochastic gradient descent opti-
mizer for 250 epochs with batch size 64 and initial learning
rate 0.1, which is decayed by cosine annealing. For a train-
ing video clip, 64 consecutive frames are randomly sampled
from a video and T frames are sub-sampled with τ tempo-
ral stride as an input for video models. For every model,
random resize crop and random horizontal flip are applied
on training video clips as standard augmentations. For eval-
uation, we use 3 × 10 view ensembles as in [7], where 10
clips are uniformly sampled along the temporal dimension
from the entire video sequences and 3 spatial regions are
uniformly sampled along the longer side of the frames.

Network architecture. We use the SlowOnly, Slow-
Fast [7], and interaction preserved CSN (ip-CSN) [34]
to show the impact of VideoMix on the video classifica-

tion task. Every model is based on the ResNet architec-
ture [13]. We denote the specific ResNet type with the
suffix “-(#depth)”. We also denote each video model with
frame length T and temporal stride τ in the trailing bracket
(T ×τ). For example, SlowOnly-50 (4×16) is based on the
ResNet-50 architecture, considers T = 4 input frames sub-
sampled from the original 64 frames with temporal stride
τ = 16. SlowFast-50 (8 × 8) takes two separate input
streams, the slow and fast pathways, each with 8 and 32
total number of input frames (T ) with temporal strides (τ )
8 and 2, respectively.

Kinetics-400 results. We evaluate VideoMix on Kinetics-
400 with SlowOnly and SlowFast networks [7] as the base
network architectures. SlowFast combines two branches:
the slow branch for static spatial features and the fast
branch for dynamic motion features. SlowOnly only has the
slow branch that is similar to the ResNet [13] architecture
with 3D convolutional kernels. The experimental results are
shown in Table 4. The accuracies in the table are reproduced
results3. We also report the inference cost (GFlops) of a sin-

3The original paper has reported the top-1 accuracies for SlowOnly-50
(4×16), SlowOnly-50 (8×8), and SlowFast-50 (8×8) as 72.6, 74.8, and
77.0, respectively. The difference is due to the 10% unavailable videos in
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Model VideoMix top1 top5 GFlops×views

I3D 72.1 90.3 108 × N/A
Two-Stream I3D 75.7 92.0 216 × N/A
Nonlocal-ResNet50 76.5 92.6 282 × 30

SlowOnly-50 (4× 16) 71.8 89.6 26 × 30
SlowOnly-50 (4× 16) X 72.7 90.3 26 × 30

SlowOnly-50 (8× 8) 73.6 90.7 54 × 30
SlowOnly-50 (8× 8) X 74.9 91.7 54 × 30

SlowFast-50 (8× 8) 75.9 91.9 65 × 30
SlowFast-50 (8× 8) X 76.6 92.6 65 × 30

Table 4: Kinetics-400 action recognition results. The in-
ference cost is reported in the last column with GFlops of a
single view × the number of views. N/A indicates the num-
ber of views are not available for us.

Model VideoMix top1 top5

ip-CSN-50 (8× 8) 74.8 91.9
ip-CSN-50 (8× 8) X 75.9 93.1

SlowOnly-50 (4× 16) 74.4 91.3
SlowOnly-50 (4× 16) X 76.0 93.0

SlowOnly-50 (8× 8) 77.5 93.2
SlowOnly-50 (8× 8) X 79.2 94.1

SlowFast-50 (8× 8) 79.5 93.9
SlowFast-50 (8× 8) X 81.9 95.1

Table 5: Mini-Kinetics action recognition results.

gle view (a temporal clip with spatial crop) as well as the
number of views for the prediction of a single video. We
observe that VideoMix consistently improves the accuracy
of baseline models. VideoMix achieves the top-1 accuracy
of 72.7%, 74.9%, and 76.6% for SlowOnly-50 (4 × 16),
SlowOnly-50 (8 × 8), and SlowFast-50 (8 × 8) with im-
provements of +0.9%, +1.3%, and +0.7%, respectively.
We also show that VideoMix-augmented SlowFast recog-
nizer achieves a competitive performance (76.6%) against
other methods such as I3D [2] (72.1%), Two-Stream I3D [2]
(75.7%), and Nonlocal-ResNet50 [36] (76.5%) which re-
quire more computational costs (GFlops) than the SlowFast
architecture.

Mini-Kinetics results. We also evaluate VideoMix on
Mini-Kinetics as shown in Table 5. We observe that
VideoMix improves the performance of various baseline
architectures: ip-CSN-50 [34], SlowOnly-50 (4 × 16),
SlowOnly-50 (8×8), and SlowOnly-50 (8×8) with 75.9%

Kinetics-400 and smaller batch sizes due to GPU limitations.

Augmentation type top1 top5

Baseline 75.2 91.7
VideoMix (Ours; α=1.0) 77.6 93.5

VideoMix (α=0.2) 77.0 93.5
VideoMix (α=0.5) 77.6 93.4
VideoMix (α=2.0) 77.3 93.6
VideoMix (prob=0.5) 77.0 93.0

VideoMix (#videos=3) 75.7 93.0
VideoMix (#videos=4) 71.9 91.4

Temporal VideoMix 75.6 92.5
Spatio-temporal VideoMix 76.7 92.9
Per-frame VideoMix 74.8 92.8

Table 6: Ablation studies. Results are based on SlowOnly-
34 (8× 8) and Mini-Kinetics.

(+1.1%), 76.0% (+1.6%), 79.2% (+1.7%) and 81.9%
(+2.4%), respectively.

Ablation Studies. We conduct ablation studies on the
Mini-Kinetics dataset. SlowOnly-34 is used as the run-
ning baseline, where the BasicBlock is used as in ResNet-
34 [13]. The results are shown in Table 6.

We first examine the impact of the mixture area hyper-
parameter α ∈ {0.2, 0.5, 1.0(ours), 2.0}. VideoMix at var-
ious α values exhibits stable performances, uniformly out-
performing the vanilla baseline. VideoMix is not sensitive
to the hyperparameter α. When we reduce the chance of
applying VideoMix on a minibatch to prob=0.5 (default is
prob=1.0), the top-1 accuracy drops by 0.6 percent point.
The simple strategy of applying VideoMix on every video
in the batch is a better choice. When we increase the num-
ber of mixing videos (“#videos”) more than two, the perfor-
mance significantly drops, which indicates that two videos
are enough for VideoMix and mixing more than two videos
may hinder the training convergence.

Temporal VideoMix and Spatio-temporal VideoMix are
not as effective as the VideoMix (Spatial VideoMix), with
only +0.4% and +1.5% boosts over the baseline. Per-frame
VideoMix independently applies VideoMix at every frame,
ruining the temporal continuity of the VideoMix operation.
It shows an even worse accuracy of 74.8%, lower than the
original model. Temporal continuity is an important ingre-
dient for the video augmentation.

More ablation studies to see the effect of dataset sizes
and applying other data augmentation methods together
with VideoMix are provided in Appendix B.
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Model VideoMix top1 top5

SlowOnly-50 (8× 8) 59.1 85.1
SlowOnly-50 (8× 8) X 60.0 86.0

SlowFast-50 (8× 8) 61.5 86.9
SlowFast-50 (8× 8) X 62.3 87.6

Table 7: Something-Something-V2 action recognition re-
sults.

4.2. Something-Something-V2

Dataset. Something-Something-V2 dataset [9] contains
169k training and 25k validation videos with 174 action
classes. We evaluate the performances with top-1 and top-5
accuracies. Something-Something-V2 is known for the fine-
grainedness of actions, the diversity of contexts. It poses
new challenges for action recognition not covered by Ki-
netics [17].

Implementation details. We use SlowOnly-50 (8×8) and
SlowFast-50 (8 × 8) models. The models are pre-trained
on Kinetics-400 with the standard training strategy, and the
final fully-connected layer is replaced with the new one
with 174 output dimensions. The entire models are then
fine-tuned for the Something-Something-V2 dataset for 40
epochs with the batch size 64 and learning rate 0.01, which
is decayed by a factor of 10 after 26 and 33 epochs. Other
implementation details are in Appendix C.

Results. We investigate how well VideoMix improves the
generalizability of action recognition models in the chal-
lenging benchmark beyond the Kinetics. To separate the
fine-tuning effects of VideoMix, it is applied only during
the fine-tuning stage. The pretrained model is the same as
the baseline. Table 7 shows the results. We observe that
VideoMix improves the top-1 accuracies of SlowOnly-50
(8 × 8) and SlowFast-50 (8 × 8) by +0.9% and +0.8%
against the baselines, respectively. VideoMix is effective on
Something-Something-V2 as well.

4.3. Weakly Supervised Temporal Action Localiza-
tion

The goal of weakly supervised temporal action localiza-
tion (WSTAL) is to localize actions in untrimmed videos
with a classifier trained using video-wise class labels only.
Given a video input sequence, WSTAL model predicts the
sequence’s class label and also generates one-dimensional
temporal proposals to localize actions in the video. WSTAL
models do not exploit temporal action annotations during
training and the generated temporal proposals are evalu-
ated on validation videos with validation ground truth an-

notations. To localize the action instances well, a video
model recognizes action categories from full video se-
quences and not focus on small discriminant frames of the
action. Through the WSTAL experiments, we verify that
VideoMix improves the temporal localization ability of an
action recognition models by guiding them to attend on
wider frames of action. To evaluate the temporal localizabil-
ity, we apply VideoMix over the baseline WSTAL methods.

Dataset. We conduct weakly supervised temporal action
localization (WSTAL) task on THUMOS’14 dataset [14].
THUMOS’14 dataset originally consists of 13,320 trimmed
videos for training and 2,584 untrimmed videos for val-
idation with 101 action categories. We follow previous
WSTAL methods’ setting [20, 22, 27]. We train WSTAL
models with the 20 class subset of the untrimmed videos,
which consists of 200 untrimmed videos without tempo-
ral annotations. The temporal localization performance of
a model is evaluated by 212 untrimmed videos with tempo-
ral annotations. WSTAL on THUMOS’14 dataset is a chal-
lenging task since the length of untrimmed video could be
quite long (up to 26 minute) and multiple actions could exist
in a video.

Training and inference. For training, we first extract
I3D [2] features from the training videos as done in [20].
We sample 750 video segments from a training video and
RGB frames and optical flows are separately fed into dual-
path I3D network. Each RGB and optical flow frame re-
sults in 1024-dimensional feature, thus the dimension of
extracted feature for a video is 750 × 1024 for RGB in-
put, and 750 × 2048 for both using RGB and optical flow
input (RGB+flow). The WSTAL model, which consists of
two 3 × 3 convolutional layers followed with LeakyReLU
activation and a 1 × 1 convolutional layer, takes the ex-
tracted features and predicts its class label. Since the net-
work is trained with pre-computed features, we do not con-
sider spatial VideoMix, but utilize temporal VideoMix on
the extracted features. Implementation details are in Ap-
pendix D. For evaluation, temporal class activation mapping
(T-CAM) [42, 22] is utilized to localize action instances
along the temporal dimension. We threshold T-CAM below
50% of the highest value, and all 1-dimensional continu-
ous segments are considered as action instance proposals as
in [29]. Evaluation metric is average precision (AP) of in-
tersection over union (IoU) thresholds from 0.1 to 0.9, and
we report their mean value (mAP) as in [29, 22, 20].

Results. Table 8 shows the WSTAL performances with
and without optical flow features. We compare VideoMix
against the baselines including Hide-and-Seek [29], which
has been reported to improve weakly supervised object lo-
calization on static images and WSTAL on videos. We also
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Method mAP

I3D RGB (Baseline) 13.3
+ Hide-and-Seek [29] 13.6
+ Mixup [40] 14.0
+ VideoMix 14.2

I3D RGB+Flow (Baseline) 17.8
+ Hide-and-Seek [29] 18.2
+ Mixup [40] 18.2
+ VideoMix 19.3

Table 8: Weakly supervised temporal action localization.
Results are on THUMOS14.

compare against Mixup [40]. We observe that VideoMix
improves the temporal localization accuracy mAP of base-
line by +0.9% and +1.5% with and without optical flows,
respectively. VideoMix also outperforms the Hide-and-Seek
and Mixup in both scenarios showing its superior tem-
poral localization ability. We also conducted VideoMix
with a stronger baseline, W-TALC [24], and confirmed that
VideoMix improves the performance of W-TALC from 31.1
to 32.3 (+1.2) mAP, which is at the state-of-the-art level.

4.4. AVA Action Detection

Kinetics pretraining is a widely-used practice for many
video recognition tasks [10, 31, 7]. We validate whether
VideoMix pretrained models bring better performance on
the downstream task of detecting actions in videos.

Dataset. AVA v2.2 dataset [10] consists of 235 train-
ing and 64 validation videos of human actions in videos.
Each video is 15 minutes long, and the action locations are
densely annotated as bounding boxes in space and time. We
follow the protocol in [10] to train and evaluate the detection
of 60 human action classes. We use the mean average pre-
cision (mAP) metric to measure the performance of video
action detection using a frame-level intersection-over-union
(IoU) threshold 0.5.

Detection framework. Our detector is based on the
Faster R-CNN [25] architecture, which is modified as in [7]
to adapt to the video action detection task. The spatial stride
of the final convolutional block is reduced from 2 to 1 to in-
crease the feature map size. The 2D RoIAlign layer [12]
is replaced by the 3D RoIAlign. SlowOnly-50 (8 × 8) and
SlowFast-50 (8×8) have been used as the backbone network
for the detection framework. We use the human bounding
box proposals provided by [7] computed by an off-the-shelf
human detector fine-tuned on AVA persons.

Backbone VideoMix val mAPPretrained
SlowOnly-50 (8× 8) 19.1
SlowOnly-50 (8× 8) X 20.4
SlowFast-50 (8× 8) 23.2
SlowFast-50 (8× 8) X 24.9

Table 9: AVA action detection. Impact of VideoMix-
pretraining on the transfer learning of AVA action detection.

Training and inference. We initialize two detectors with
the weights pretrained on Kinetics-400 with or without Vi-
doeMix. We apply the same fine-tuning strategy afterwards
to separate the effect of VideoMix on pretraining. We train
detectors for 20 epochs using the SGD optimizer with ini-
tial learning rate 0.1 decayed by factor 0.1 at 10 and 15
epoch. The spatial dimension of the shorter side is resized
to 256 pixels while maintaining the aspect ratio. 64 consec-
utive frames are extracted for training. Further details are in
Appendix E.

Results. Table 9 shows the performances of our detec-
tor on the AVA benchmark. Pretraining the detector with
VideoMix improves the performance of SlowOnly-50 and
SlowFast-50 to 20.4 (+1.3) and 24.9 (+1.7) mAP, respec-
tively. Switching the pretrained weights to the VideoMix
version introduces the gain in detection performance for
free. The weights will be published in the future.

5. Conclusion
We have analyzed the augmentation strategies for video

action classification task. We have introduced VideoMix, a
simple, efficient, and effective augmentation method. On
Kinetics action recognition, VideoMix improves the top-1
accuracies of SlowOnly-50 and SlowFast-50 by +1.3% and
+0.5%, respectively. On Something-Something-V2 dataset,
VideoMix brings +0.9% and +0.8% gains in top-1 ac-
curacies on SlowOnly-50 and SlowFast-50, respectively.
VideoMix also improves the localization ability of the clas-
sifiers: on weakly supervised temporal action localization
(WSTAL), VideoMix consistently improves the localization
accuracy over the baselines. Finally, VideoMix improves
the Kinetics-pretrained model for the transfer-learning task
of video action detection. VideoMix, as well as VideoMix
pretrained weights, provide a simple and cheap solution to
boost up the video recognition performances across diverse
tasks.
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A. VideoMix Algorithm
We describe code-level algorithm of VideoMix vari-

ants in Algorithm 1. The input video of a minibatch is
(N × C × T ×W × H)-size tensor, where N , C, T , W ,
and H denote the size of a minibatch, the channel size, the
the width, and the height of a frame. VideoMix first shuf-
fles the order of the minibatch along the first dimension of
the tensor. Next λ is sampled from the uniform distribution.
Then the cuboid coordinate C = (t1, t2, w1, w2, h1, h2) are
sampled corresponding to the type of VideoMix. Note that
‘clip’ function truncates the coordinates to fit in the frame
space (e.g., clip(w)=min(max(w,W ), 0)).

Spatial VideoMix (line 7-10) is the same as we de-
scribed in the main paper. For Temporal VideoMix (line
12-15), we only samples t1 and t2. For Spatio-temporal
Videomix (line 17-20), t1, t2, w1, w2, h1, and h2 are simul-
taneously sampled. After sample a cuboid C, we combine
two videos by cutting and inserting the cuboid region, and λ
is adjust by computing the exact fraction ratio of the cuboid.
The target label is also blended by interpolation manner.
Note that VideoMix is simple and easy to implement with
few lines, but it is very effective on various video tasks.

B. Additional Experiments
B.1. HMDB-51 and UCF-101

We evaluated VideoMix on HMDB-51 [19] and UCF-
101 [30] benchmarks. Table 10 and Table11 shows the re-
sults. Our method consistently boosts the top-1 accuracy
against the baseline models.

Methods top1 acc.

I3D (Baseline) 66.0
I3D + VideoMix 66.9 (+0.9)

Table 10: HMDB-51 benchmark results.

Methods top1 acc.

VGG16 (Baseline) 79.8
VGG16 + VideoMix 81.7 (+2.1)
I3D (Baseline) 93.3
I3D + VideoMix 93.4 (+0.1)

Table 11: UCF-101 benchmark results.

B.2. Additional ablation study

We subsample the mini-Kinetics dataset (10%, 25%,
50%, and 100%) and train the SlowOnly-34 model on the
sampled datasets. Table 12 shows the results. Results show

that VideoMix consistently improves accuracies against the
baseline for all the subsets of the Mini-Kinetics dataset.

Dataset size 10% 25% 50% 100%

Baseline 31.2 47.2 67.6 75.2
VideoMix 33.3 49.6 68.0 77.6

Table 12: Impact of dataset sizes. Top-1 accuracy is re-
ported.

To see the complementarity among the data aug-
mentation methods (e.g., Cutout, Mixup, RandAug, and
VideoMix), we conduct various combinations of data aug-
mentation methods. Starting from the standard augmen-
tation (flip and random resize), we stack up VideoMix,
Mixup, Cutout, and RandAugment. Table 13 shows the re-
sults. VideoMix boosts performance against the standard
augmentation, a relatively weak augmentation. Combining
VideoMix with other strong augmentations (Cutout or Ran-
dAugment) degrades performance since the combination
leads to an excessive amount of regularization. Mixup also
shows similar tendency that combining with other augmen-
tations leads to degraded performance.

Standard Aug. VideoMix Mixup Cutout RandAug top1

X 75.2
X X 77.6
X X X 76.3
X X X 76.4
X X X X 73.5
X X 77.0
X X X 74.2
X X X X 76.7

Table 13: Complementarity among data augmentations.

C. Something-Something-V2 Action Recogni-
tion

We describe the implementation details for Something-
Something-V2 Action Recognition here.

We train models on Something-Something-V2 dataset
for 40 epochs with the batch size 64 and learning rate 0.01.
The learning rate is decayed by a factor of 10 after 26 and
33 epochs. Other training details are the same as Kinetics
(Section 4.1 of the main paper), except for the standard data
augmentation.

The standard data augmentation of Kinetics experiments
is that horizontal flipping, random cropping, and temporal
uniform sampling. Temporal uniform sampling samples a
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Algorithm 1 Pseudo-code of VideoMix
1: for each iteration do
2: input, target = get minibatch(dataset) . input: (N × C × T ×W ×H)

. target: (N ×#Classes)
3: if mode == training then
4: inputshuff, targetshuff = shuffle minibatch(input, target)
5: λ = Unif(0, 1)
6: if VideoMix mode == Spatial then
7: wc, wh = Unif(0,W ), Unif(0, H)

8: w1, w2 = clip(wc −W
√
λ
2
), clip(wc +W

√
λ
2
)

9: h1, h2 = clip(hc −H
√
λ
2
), clip(hc +H

√
λ
2
)

10: t1, t2 = 0, T
11: else if VideoMix mode == Temporal then
12: tc = Unif(0, T )
13: w1, w2 = 0, W
14: h1, h2 = 0, H
15: t1, t2 = clip(tc − T λ

2
), clip(tc + T λ

2
)

16: else if VideoMix mode == Spatio-Temporal then
17: wc, wh, tc = Unif(0,W ), Unif(0, H), Unif(0, T )
18: w1, w2 = clip(wc −W

3√
λ

2
), clip(wc +W

3√
λ

2
)

19: h1, h2 = clip(hc −H
3√
λ

2
), clip(hc +H

3√
λ

2
)

20: t1, t2 = clip(tc − T
3√
λ

2
), clip(tc + T

3√
λ

2
)

21: end if
22: input[:, :, t1:t2, w1:w2, h1:h2] = inputshuff[:, :, t1:t2, w1:w2, h1:h2]
23: λ = (t2−t1)×(w2−w1)×(h2−h1)

(T×W×H)
. Adjust lambda to the exact fraction ratio.

24: target = λ * target + (1 - λ) * targetshuff

25: end if
26: output = model forward(input)
27: loss = compute loss(output, target)
28: update model(model, loss)
29: end for

random clip of the entire sequences with a uniform frame
interval.

For Something-Something-V2, we do not use horizontal
flipping augmentation since the action’s direction is critical
for this dataset (e.g., there is a ‘pushing something from
left to right’ action category). Also, we sample frames with
temporally perturbed interval instead of temporal uniform
sampling. In detail, we first split the entire frames with T
bins (T is the number of sampled frames), and we select a
frame from each bin and aggregate T frames.

For inference, we use 3 spatial crops and single temporal
crop.

D. THUMOS’14 Weakly Supervised Temporal
Action Localization

We describe the implementation details for THU-
MOS’14 Weakly Supervised Temporal Action Localization
(WSTAL) task.

We utilize the codebase4 of [20] for I3D [2] baseline.

4https://github.com/Pilhyeon/BaSNet-pytorch

We extract I3D [2] features from training video using this
repository5. We sample 750 video segments from a training
video. Each segment has 16 frames and the segments are
not overlapped.

The input video has RGB frames and also optical flows,
and they are separately fed into dual-path I3D network.
Each segment of RGB and optical flow frames results in
1024-dimensional feature. Thus the dimension of extracted
feature for a video (i.e., 750 segments) is 750 × 1024 for
RGB input, and 750 × 2048 for both using RGB and opti-
cal flow input (RGB+flow). We apply Temporal VideoMix
along the temporal dimension (i.e., the first axis of the fea-
ture 750× 2048) on the extracted feature.

To see the effectiveness of VideoMix with more stronger
baseline, we conducted VideoMix with W-TALC [24] using
the official pytorch codebase6. We follow the original code-
base’s setting and we apply Temporal VideoMix along the
temporal dimension as in the I3D experiment.

5https://github.com/piergiaj/pytorch-i3d
6https://github.com/sujoyp/wtalc-pytorch
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E. AVA Action Detection
Our action detector is based on the Faster R-CNN [25]

architecture, which is modified as in [7] to adapt to the video
action detection task. We use PySlowFast7 and Detectron28

codebases. The spatial stride of the final convolutional block
is reduced from 2 to 1 to increase the feature map size.
We extend 2D RoIAlign layer [12] to 3D RoIAlign layer,
which extracts RoI features spatially and then aggregate via
global average pooling. We use the human bounding box
proposals provided by [7] computed by an off-the-shelf hu-
man detector fine-tuned on AVA persons, which is a Faster
RCNN with a ResNeXt-101-FPN [38] backbone. The per-
son region proposals are detected by human detector with a
confidence threshold of 0.8.

We train detectors for 20 epochs using the SGD opti-
mizer with initial learning rate 0.1 decayed by factor 0.1
at 10 and 15 epoch. The spatial size of the input video is
224×224, and 64 consecutive frames are extracted for train-
ing. For inference, the spatial dimension of the shorter side
is resized to 256 pixels while maintaining the aspect ratio.

F. Spatio-temporal Class Activation Mapping
We describe the spatio-temporal class activation map-

ping (ST-CAM) which is extended from spatial CAM of
the original paper [42]. We use a SlowOnly-50 (8× 8) net-
work [7] which is pretrained on Kinetics-400 [17] dataset.

To obtain a ST-CAM of a given video input, we first ex-
tract the final feature map of the SlowOnly-50 network be-
fore the global average pooling layer. The temporal dimen-
sion of the feature map is 8 which is the same as the number
of input frames. We reduce the spatial stride of the last con-
volution from 2 to 1 of the original SlowOnly-50 network,
so that the spatial dimension of the feature map is 14 × 14
to clearly see the CAM heatmap, while the original size is
7 × 7. The number of channels of the feature map is 2048.
Then, similar to the original paper [42], the extracted final
feature map (2048 × 8 × 14 × 14) is multiplied with the
fully-connected layer’s weight corresponding to the target
class (2048 × 1), resulting in (8 × 14 × 14)-dimensional
spatio-temporal class activation mapping. We sub-sampled
4 frames of the ST-CAM in the main paper due to the limit
of page width.

We present additional ST-CAM visualizations in Fig-
ure 4, 5, 6, and 7 which show the VideoMix samples and
corresponding class activation maps with respect to the two
action classes.

7https://github.com/facebookresearch/SlowFast
8https://github.com/facebookresearch/detectron2
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‘clean and jerk’ ‘kicking soccer ball’
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‘kicking soccer ball’
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Figure 4: Spatio-temporal class activation mapping (ST-CAM) on VideoMix sample of the “clean and jerk” and “kicking
soccer ball” videos.
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Figure 5: Spatio-temporal class activation mapping (ST-CAM) on VideoMix sample of the “golf putting” and “juggling balls”
videos.
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‘mowing lawn’ ‘jumping into pool’
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Figure 6: Spatio-temporal class activation mapping (ST-CAM) on VideoMix sample of the “mowing lawn” and “jumping
into pool” videos.
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Figure 7: Spatio-temporal class activation mapping (ST-CAM) on VideoMix sample of the “high kick” and “pull ups” videos.
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