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Abstract

ImageNet has been arguably the most popular image
classification benchmark, but it is also the one with a sig-
nificant level of label noise. Recent studies have shown that
many samples contain multiple classes, despite being as-
sumed to be a single-label benchmark. They have thus pro-
posed to turn ImageNet evaluation into a multi-label task,
with exhaustive multi-label annotations per image. How-
ever, they have not fixed the training set, presumably be-
cause of a formidable annotation cost. We argue that the
mismatch between single-label annotations and effectively
multi-label images is equally, if not more, problematic in
the training setup, where random crops are applied. With
the single-label annotations, a random crop of an image
may contain an entirely different object from the ground
truth, introducing noisy or even incorrect supervision dur-
ing training. We thus re-label the ImageNet training set with
multi-labels. We address the annotation cost barrier by let-
ting a strong image classifier, trained on an extra source
of data, generate the multi-labels. We utilize the pixel-wise
multi-label predictions before the final pooling layer, in or-
der to exploit the additional location-specific supervision
signals. Training on the re-labeled samples results in im-
proved model performances across the board. ResNet-50
attains the top-1 classification accuracy of 78.9% on Im-
ageNet with our localized multi-labels, which can be fur-
ther boosted to 80.2% with the CutMix regularization. We
show that the models trained with localized multi-labels
also outperforms the baselines on transfer learning to ob-
ject detection and instance segmentation tasks, and various
robustness benchmarks. The re-labeled ImageNet training
set, pre-trained weights, and the source code are available
at https://github.com/naver-ai/relabel_
imagenet.
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Figure 1. Re-labeling ImageNet training data. Original
ImageNet annotation is a single label (“ox”), whereas the
image contains multiple ImageNet categories (“ox”, “barn”,
and “fence”). Random crops of an image may contain an
entirely different object category from the global annota-
tion. Our method (ReLabel) generates location-wise multi-
labels, resulting in cleaner supervision per random crop.

1. Introduction
The ImageNet dataset [42] has been at the center of

modern advances in computer vision. Since the introduction
of ImageNet, image recognition models based on convolu-
tional neural networks have made quantum jumps in perfor-
mances [30, 45, 16]. Improving the model performance on
ImageNet is seen as a litmus test for the general applicabil-
ity of the model and the transfer learning performances on
downstream tasks [28, 60].

ImageNet, however, turns out to be noisier than one
would expect. Recent studies [46, 53, 2, 43] have shed light
on an overlooked problem with ImageNet that a significant
portion of the dataset is composed of images with multi-
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ple possible labels. This contradicts the underlying assump-
tion that there is only a single object class per image: the
evaluation metrics penalize any prediction beyond the sin-
gle ground-truth class. Thus, researchers have refined the
ImageNet validation samples with multi-labeling policy us-
ing human annotators [2, 43], and proposed new multi-label
evaluation metrics. Under these new evaluation schemes, re-
cent state-of-the-art models [56, 52] that seem to have sur-
passed the human level of recognition have been found to
fall short of the human performance level.

The mismatch between the multiplicity of object classes
per image and the assignment of single labels results in
problems not only for evaluation, but also for training: the
supervision becomes noisy. The widespread adoption of
random crop augmentation [48] aggravates the problem. A
random crop of an image may contain an entirely different
object from the original single label, introducing potentially
wrong supervision signals during training, as in Figure 1.

The random crop augmentation makes supervision noisy
not only for images with multiple object classes. Even for
images with a single object class, the random crop often
contains no foreground object. It is estimated that, under the
standard ImageNet training setup1, 8% of the random crops
have no overlap with the ground truths. Only 23.5% of the
random crops have the intersection-over-union (IoU) mea-
sure greater than 50% with the ground truth boxes (see Fig-
ure 2). Training a model on ImageNet inevitably involves a
lot of noisy supervision.

Ideally, for each training image, we want a human an-
notation telling the model (1) the full set of classes present
(multi-label) and (2) where each object is located (localized
label). One such format would be a dense pixel labeling
L ∈ {0, 1}H×W×C where C is the number of classes, as
done for semantic segmentation ground truths. However, it
is hardly scalable to collect even just the multi-label annota-
tions for the 1.28 million ImageNet training samples. It took
more than three months for five human experts (authors of
[43]) to label mere 2,000 images.

In this paper, we propose a re-labeling strategy,
ReLabel, to obtain pixel-wise labeling L ∈ RH×W×C ,
which are both multi-labels and localized labels, on the Im-
ageNet training set. We use strong classifiers trained on ex-
ternal training data to generate those labels. The predictions
before the final pooling layer have been used. We also con-
tribute a novel training scheme, LabelPooling, for train-
ing classifiers based on the dense labels. For each random
crop sample, we compute the multi-label ground truth by
pooling the label scores from the crop region. ReLabel in-
curs only a one-time cost for generating the label maps per
dataset, unlike e.g. Knowledge Distillation [22] which in-
volves one forward pass per training iteration to generate
the supervision. Our LabelPooling supervision adds only

1A random crop is sampled from 8% to 100% of the entire image area.

Figure 2. Cumulative distribution of Intersection-over-
Union (IoU) between the random crops and ground-truth
bounding boxes. We sample 100 random crops per image
on the ImageNet validation set (50K images).

a small amount of computational cost on the usual single-
label cross-entropy supervision.

We present an extensive set of evaluations for vari-
ous model architectures trained with ReLabel on multi-
ple datasets and tasks. On ImageNet classification, training
ResNet-50 with ImageNet ReLabel has achieved a top-1 ac-
curacy of 78.9%, a +1.4 pp gain over the baseline model
trained with the original labels. The accuracy of ResNet-50
reaches 80.2% by employing the CutMix regularization on
top, a new state-of-the-art performance on ImageNet to the
best of our knowledge. Models trained with ReLabel have
also consistently improved accuracies on ImageNet multi-
label evaluation metrics proposed by [2, 43]. ReLabel and
LabelPooling result in consistent improvements for transfer
learning experiments, including the object detection and in-
stance segmentation tasks on COCO and fine-grained clas-
sifications tasks. We further test LabelPooling on the multi-
label classification task on COCO. Finally, we show that
models trained with ReLabel are more resilient to test-time
perturbations, as will be verified through experiments on
several robustness benchmarks.

2. Related Works

We start this section by introducing prior works dis-
cussing the issues with ImageNet labels. We then discuss
a few other research areas that share similarities with our
approach. For each area, we describe the key differences
from our approach.
Labeling issues in ImageNet. ImageNet [42] has effec-
tively served as the standard benchmark for the image clas-
sifiers: “methods live or die by their performance on this
benchmark”, as argued by Shankar et al. [43]. The relia-
bility of the benchmark itself has thus come to be the sub-
ject of careful research and analysis. As with many other
datasets, ImageNet contains much label noise [54, 40]. One
of the most persistent and systematic types of label error on
ImageNet is the erroneous single labels [46, 43, 53, 2], re-
ferring to the cases where only one out of multiple present
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multi-label local label efficient

Original ImageNet training 8 8 4

Knowledge distillation 4 4 8

ReLabel & LabelPooling (ours) 4 4 4

Table 1. What are the differences? Comparison among the
training options on ImageNet.

categories is annotated. Such errors are prevalent, as Ima-
geNet contains many images with multiple classes. Shankar
et al. [43] and Beyer et al. [2] have identified three subcate-
gories for the erroneous single labels: (1) an image contains
multiple object classes, (2) there exist multiple labels that
are synonymous or hierarchically including the other, and
(3) inherent ambiguity in an image makes multiple labels
plausible. Those studies have refined the validation set la-
bels into multi-labels to establish an truthful and fair evalua-
tion of models on effectively multi-label images. The focus
of [43], however, has been only the validation, not train-
ing. [2] has introduced a clean-up scheme to remove train-
ing samples with potentially erroneous labels by validating
them with predictions from a strong classifier. Our work fo-
cuses on the clean-up strategy for the ImageNet training la-
bels. Like [2], we utilize strong classifiers to clean up the
training labels. Unlike [2], we correct the wrong labels, not
remove. Our labels are also given per region. In our experi-
ments, we show that our scheme results in improved perfor-
mance compared to [2].
Knowledge distillation. Knowledge distillation (KD) [22]
also utilizes machine supervisions generated by the
“teacher” network. Studies on KD have enriched and diver-
sified the options for the teacher, such as feature map distil-
lation [61, 21, 20], relation-based distillation [37, 51], en-
semble distillation [44, 65], or iterative self-distillation [10,
58, 56]. While those studies pursue stronger forms of super-
vision, none of them have considered a strong, state-of-the-
art network as a teacher because it makes the KD supervi-
sion far heavier and impractical. With the random crop aug-
mentation in place, every training iteration would involve
a forward pass through the strong yet heavy teacher. La-
belPooling is similar in that the model is trained with ma-
chine supervision, but is more efficient. LabelPooling su-
pervises a network with pre-computed label maps, rather
than generating the label on the fly through the teacher for
every random crop during training. The key advantages of
ReLabel and LabelPooling against the original training and
KD are summarized in Table 1. We present experiments
comparing ours against the state-of-the-art KD approaches.
Training tricks for ImageNet. Data augmentation is a sim-
ple yet powerful strategy for ImageNet training. The stan-
dard augmentation setting includes random cropping, flip-
ping, and color jittering, as used in [13, 11, 24, 48, 60, 52].

In particular, the random crop augmentation, which crops
random coordinates in an image and resize to a fixed size, is
indispensable for a reasonable performance on ImageNet.
Our work considers localized labels that make the super-
vision provided for each random crop region more sensi-
ble. There are additional training tricks for training classi-
fiers [62, 60, 11, 25, 9] that are orthogonal to our re-labeled
training data. We show that those tricks can be combined
with our re-labeling for improved performances.

3. Method

We propose a re-labeling strategy ReLabel to obtain
pixel-level ground truth labels on the ImageNet training set.
The label maps have two characteristics: (1) multi-class la-
bels and (2) localized labels. The labels maps are obtained
from a machine annotator: a state-of-the-art image classifier
trained on an extra source data. We describe how to obtain
the label maps and present a novel training framework, La-
belPooling, to train image classifier using such localized
multi-labels.

3.1. Re-labeling ImageNet

We obtain dense ground truth labels from a machine
annotator, a state-of-the-art classifier that has been pre-
trained on a super-ImageNet scale (e.g. JFT-300M [47]
or InstagramNet-1B [35]) and fine-tuned on ImageNet to
predict ImageNet classes. Predictions from such a model
are arguably close to human predictions [2]. Since train-
ing the machine annotators requires an access to propri-
etary training data [47, 35] and hundreds of GPU or TPU
days, we have adopted the open-source trained weights as
the machine annotators. We show the comparison of differ-
ent available machine annotators later in Section 3.3.

We remark that while the machine annotators are trained
with single-label supervision (softmax cross-entropy loss)
on ImageNet, they still tend to make multi-label predic-
tions for images with multiple categories. As an illustra-
tion, consider an image x with two correct categories 0
and 1. Assume that the model is fed with both (x, y =
0) and (x, y = 1) equal number of times during train-
ing, with those noisy labels. Then, the cross-entropy loss
is given by − 1

2 (
∑

k y
0
k log pk(x) +

∑
k y

1
k log pk(x)) =

−
∑

k
y0
k+y1

k

2 log pk(x) where yc is the one-hot vector with
1 at index c and p(x) is the prediction vector for x. Note
that the minimal value for the function−

∑
k qk log pk with

respect to p is taken at p = q. Thus, in this example, the
model minimizes the loss by predicting p(x) = ( 12 ,

1
2 ).

Thus, if there exist much label noise in the dataset, a model
trained with the single-label cross-entropy loss tends to pre-
dict multi-label outputs.

As an additional benefit of obtaining labels from a clas-
sifier, we consider extracting the location-specific labels.
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Figure 3. Illustration of LabelPooling. Original Ima-
geNet supervision is single-label (“Sheepdog”). LabelPool-
ing trains the model with ReLabel, localized multi-labels,
(“Sheepdog” and “Terrior”) based on the crop region.

We remove the global average pooling layer of the clas-
sifier and turn the following linear layer into a 1 × 1 con-
volutional layer, thereby turning the classifier into a fully-
convolutional network [64, 33]. The output of the model
then becomes f(x) ∈ RW×H×C . We use the output f(x)
as our label map annotations L ∈ RW×H×C . We present
the detailed procedure to obtain label maps the examples in
Appendix B.

3.2. Training a Classifier with Dense Multi-labels

Having obtained the dense multi-labels L ∈ RW×H×C

as above, how do we train a classifier with them? For this,
we propose a novel training scheme, LabelPooling, that
takes the localized ground truths into account. We show the
difference between LabelPooling and the original ImageNet
training in Figure 3. In a standard ImageNet training setup,
the supervision for the randomly crop is given by the sin-
gle label ground truth given per image. On the other hand,
LabelPooling loads a pre-computed label map and conducts
a regional pooling operation on the label map correspond-
ing to the coordinates of the random crop. We adopt the
RoIAlign [15] regional pooling approach. Global aver-
age pooling and softmax operations are performed on the
pooled prediction maps to get a multi-label ground-truth
vector in [0, 1]C with which the model is trained. We use the
cross-entropy loss. Code-level implementation of our train-
ing scheme is presented in Appendix A.

3.3. Discussion

So far we have introduced our labeling strategy and the
supervision scheme using the label maps. We study the
space and time consumption for our approach and examine
design choices.
Space consumption. We utilize EfficientNet-L2 [56] as the
machine annotator whose input resolution is 475× 475 and
the resulting label map dimension is L ∈ R15×15×1000.
Saving the entire label maps for all classes will require more

Figure 4. Machine annotators. We plot the top-1 accuracy
of ResNet-50 trained with ReLabel, where ReLabel is gen-
erated by various machine annotators.

than 1 TB of storage: (1.28 × 106) images × (15 × 15 ×
1000) dim/image × 4bytes/dim ≈ 1.0TB. Fortunately, for each
image, pixel-wise predictions beyond a few top-k classes
are essentially zero. Hence, we save the storage space by
storing only the top-5 predictions per image, resulting in 10
GB of label map data. This corresponds to only 10% addi-
tional space on top of the original ImageNet data.
Time consumption. ReLabel requires a one-time cost for
forward passing the ImageNet training images through the
machine annotator. This procedure takes about 10 GPU-
hours, which is only 3.3% of the entire train time for
ResNet-50 (328 GPU-hours2). For each training iteration,
LabelPooling performs the label map loading and regional
pooling operations on top of the standard ImageNet super-
vision, which leads to only 0.5% additional training time.
Note that ReLabel is much more computationally efficient
than knowledge distillation which requires a forward pass
through the teacher at every iteration. For example, KD with
EfficientNet-B7 teacher takes more than four times the orig-
inal training time.
Which machine annotator should we select? Ideally,
we want the machine annotator to provide precise labels
on training images. For this we consider ReLabel gen-
erated by a few state-of-the-art classifiers EfficientNet-
{B1,B3,B5,B7,B8} [50], EfficientNet-L2 [56] trained with
JFT-300M [47], and ResNeXT-101 32x{32d,48d} [57]
trained with InstagramNet-1B [35]. We train ResNet-50
with the above label maps from diverse classifiers. Note
that ResNet-50 achieves the top-1 validation accuracy of
77.5% when trained on vanilla single labels. We show the
results in Figure 4. The performance of the target model

2300 epochs on four NVIDIA V100 GPUs.
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Variants ImageNet top-1 (%)

ReLabel (localized mutli-labels) 78.9

Localized single labels 78.4 (-0.5)
Global multi-labels 78.5 (-0.4)
Global single labels 77.5 (-1.4)

Original ImageNet labels 77.5 (-1.4)

Table 2. Factor analysis of ReLabel. Results when either
or both of the multi-labelness and localizability properties
are removed from ReLabel.

overall follows the performance of the machine annotator.
When the machine supervision is not sufficiently strong
(e.g., EfficientNet-B1), the trained model shows a severe
performance drop (76.1%). We choose EfficientNet-L2 as
the machine annotator that has led to the best performance
for ResNet-50 (78.9%) in the rest of the experiments.
Factor analysis of ReLabel. ReLabel is both multi-label
and pixel-wise. To examine the necessity of the two prop-
erties, we conduct an experiment by ablating each of them.
We consider the localized single labels by taking argmax
operation instead of softmax after the RoIAlign re-
gional pooling, resulting in Lloc,single ∈ {0, 1}C . For global
multi-labels, we take the global average pooling, instead of
the RoIAlign, over the label map, resulting in the label
Lglob,multi ∈ [0, 1]C . Finally, by first performing the global
average pooling and then performing argmax, we obtain
the global single-labels, Lglob,single ∈ {0, 1}C . Note that
Lglob,single ∈ {0, 1}C labels have the same format as the
original ImageNet labels, but are machine-generated.

The results for those four variants are in Table 2. We
observe that from the ReLabel performance of 78.9%, the
removal of multi-labels and localized labels results in -0.5
pp and -0.4 pp drops, respectively. When both are missing,
there is a significant -1.4 pp drop. We thus argue that both
ingredients are indispensable for a good performance. Note
also that the global, single labels generated by a machine
do not bring about any gain compared to the original Im-
ageNet labels. This further signifies the importance of the
aforementioned properties to benefit maximally from the
machine annotations.
Confidence of ReLabel supervision. We study the confi-
dence of ReLabel supervisions at different simulated lev-
els of overlap between the random crop and the ground-
truth bounding box. We draw 5M random crop samples
as done for Figure 2. We measure the confidence for the
ReLabel’s supervision in terms of the maximum class prob-
ability of the pooled label (i.e., confidence = maxc L(c)
where L ∈ [0, 1]C). The results are shown in Figure 5. The
averaged degree of supervision of ReLabel overall follows
the degree of object existence, in particular, with small over-

Figure 5. ReLabel confidence versus GT overlap. We plot
the relationship between the confidence level for ReLabel
pooled from the crop regions and the their overlap (IoU)
with the ground truth boxes.

laps with object region (IoU< 0.4). For example, when IoU
is zero (i.e., random crops are outside the object region), the
label confidence is below 0.6, providing some uncertainty
signals for the trained model.

4. Experiments
We present various experiments where we apply our la-

beling and training schemes for localized multi-label train-
ing. We first show the effectiveness of ReLabel on Im-
ageNet classification with various network architectures
and evaluation metrics, including the recently proposed
multi-label evaluation metrics (Section 4.1). Next, we show
the transfer-learning performances for models trained with
ReLabel when they are fine-tuned for object detection, in-
stance segmentation, and fine-grained classification tasks
(Section 4.2). We show that ReLabel improves the per-
formances also for models on COCO multi-label classi-
fication tasks (Section 4.3). All experiments were imple-
mented and evaluated on NAVER Smart Machine Learning
(NSML) [26] platform with PyTorch [39]. The re-labeled
ImageNet training set, pre-trained weights, and the source
code are availalble at https://github.com/naver-
ai/relabel_imagenet.

4.1. ImageNet Classification

We evaluate ReLabel strategy on the ImageNet-1K
benchmark [42] containing 1.28 million training images and
50,000 validation images of 1,000 object categories. We use
standard data augmentation such as random cropping, flip-
ping, color jittering, as in [13, 11, 24, 48, 60, 52] for all the
models considered. We have trained the models with SGD
for 300 epochs with the initial learning rate 0.1 and the
cosine learning rate scheduling without restarts [34]. The
batch size and weight decay are set to 1, 024 and 0.0001,
respectively.
Comparison against other label manipulations. We com-
pare ReLabel against prior methods that directly adjust the
ImageNet labels. Label smoothing [49] assigns a slightly
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ImageNet ImageNetV2 [40] ReaL [2] Shankar et al. [43]
Network Supervision single-label single-label multi-label multi-label

ResNet-50 Original 77.5 79.0 83.6 85.3
ResNet-50 Label smoothing (ε=0.1) [49] 78.0 79.5 84.0 84.7
ResNet-50 Label cleaning [2] 78.1 79.1 83.6 85.2
ResNet-50 ReLabel 78.9 80.5 85.0 86.1

Table 3. ImageNet classification. Results with different types of supervision. We report performances on the single-label
benchmarks (ImageNet validation set and ImageNetV2 [40]) and multi-label benchmarks (ReaL [2] and Shankar et al. [43]).

Resources Supervision
Architecture Params Flops Vanilla ReLabel

ResNet-18 11.7M 1.8B 71.7 72.5 (+0.8)
ResNet-50 25.6M 3.8B 77.5 78.9 (+1.4)
ResNet-101 44.7M 7.6B 78.1 80.7 (+2.6)

EfficientNet-B0 5.3M 0.4B 77.4 78.0 (+0.6)
EfficientNet-B1 7.8M 0.7B 79.2 80.3 (+1.1)
EfficientNet-B2 9.2M 1.0B 80.3 81.0 (+0.7)
EfficientNet-B3 12.2M 1.8B 81.7 82.5 (+0.8)

ReXNet (×1.0) 4.8M 0.4B 77.9 78.4 (+0.5)

Table 4. ReLabel on multiple architectures. Validation
top-1 results when supervised with the original labels
(Vanilla) and ReLabel.

weaker weight on the foreground class (1 − ε) and dis-
tributes the remaining weight ε uniformly across back-
ground classes. Label cleaning by Beyer et al. [2] prunes out
all training samples where the ground truth annotation does
not agree with the prediction of a strong teacher classifier.
For this, we use the list of clean sampled provided by the
authors [2] with our own training setting. We conducted the
above label manipulation methods and ReLabel on ResNet-
50. Results are given in Table 3. We measure the single-
label accuracies on ImageNet validation and ImageNetV2
(Top-Images [40]3). We show multi-label accuracies on two
versions: ReaL [2] and Shankar et al. [43]. The metrics are
identical: 1

N

∑N
n=1 1(argmax f(xn) ∈ yn), where 1(·) is

the indicator function and argmax f(xn) is the top-1 pre-
diction for a model f . The ground-truth multi-label for im-
age xn is given as a set yn. The difference between the
metrics lies in the ground-truth multi-label annotation. We
observe that ReLabel consistently achieves the best perfor-
mance over all the metrics. We obtain 78.9% validation ac-
curacy with +1.4 pp gain from the original labels, while
the label smoothing and label cleaning boost only +0.5
pp and +0.6 pp, respectively. On ImageNetV2, ReaL, and

3Results on ImageNetV2 “MatchedFrequency” and “ Threshold 0.7”
are in Appendix C

Model ImageNet top1 (%)

ResNet-50 77.5
+ ReLabel 78.9 (+1.4)
+ ReLabel + CutMix 80.2 (+2.7)
+ ReLabel + CutMix + Extra data 81.2 (+3.7)

ResNet-101 78.1
+ ReLabel 80.7 (+2.6)
+ ReLabel + CutMix 81.6 (+3.5)

Table 5. Towards the SOTA. ReLabel with additional train-
ing tricks. “Extra data” refers to the ImageNet-21k dataset.

Shankar et al. metrics, ReLabel achieves 80.5%, 85.0%, and
86.1% accuracies, where the gains are +1.5 pp, +1.4 pp,
and +0.8 pp, respectively. It is notable that only ReLabel
achieves remarkable boosts on the multi-label benchmarks.
Label smoothing and cleaning shows only marginal gains
or even worse multi-label accuracies (e.g. label cleaning re-
sults in a 0.1 pp worse result on Shankar et al.). We con-
firm that ReLabel improves the performances of image clas-
sifiers and that it helps models truly learn to make better
multi-label predictions.
Results on various network architectures. We have
trained various architectures with ReLabel to show that
ReLabel is applicable to a wide range of networks with
different training recipes. We consider ResNet-18, ResNet-
101, EfficientNet-{B0,B1,B2,B3} [50], and ReXNet [14].
Training details to make the best performance out of Ef-
ficientNet models [50] are different from our base setting;
we describe them in Appendix D.1. We follow the original
paper’s training details for ReXNet [14]. Results are shown
in Table 4. ReLabel consistently enhances the performance
of various network architectures. The 81.7% accuracy of
EfficientNet-B3 is further improved to 82.5% with ReLabel.
State-of-the-art performance. ReLabel is complementary
to many other training tricks used for achieving the best
model performances. For example, we combine a strong
regularizer CutMix [60] with ReLabel. CutMix mixes two
training images via cut-and-paste manner and likewise
mixes the labels. To use it with ReLabel, we perform Cut-
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Figure 6. Comparison against knowledge distillation. We
plot ImageNet top-1 accuracies against the required train-
ing time for ReLabel and knowledge distillation (KD) ap-
proaches.

Mix on the randomly cropped images. The pooled labels
are then mixed according to the CutMix algorithm. We set
the hyper-parameter of CutMix α to 1.0. We show the re-
sults in Table 5. ReLabel with CutMix achieves the state-of-
the-art ImageNet top-1 accuracies of 80.2% and 81.6% for
the ResNet-50 and ResNet-101 backbones. On top of this,
we further consider using the extra training data based on
the ImageNet-21K dataset [8]: 14M images with 21K cat-
egories. Unlike the previous work utilizing the ImageNet-
21K [27] with their original single-class labels over 21K
categories, we perform ReLabel on them to generate multi-
labels over the 1K classes. We then sub-sample 4M train-
ing data from the entire 14M training images by balancing
the top-1 class distributions, as done in [57]. Training with
this extra data and CutMix on top of ReLabel boosts the
accuracy of ResNet-50 to 81.2%. In summary, ReLabel is a
practical addition to existing training tricks that consistently
improves the backbone performances.
Comparison against knowledge distillation. We com-
pare ReLabel against knowledge distillation (KD) [22]
in terms of the performance and training time costs. We
train ResNet-50 with EfficientNet teachers: EfficientNet-
{B1,B3,B5,B7}; we have not considered performing KD
with EfficientNet-L2 as it would take 160 GPU days,
beyond our computational capacity. Training details for
KD are in Appendix D.2. Figure 6 shows the results.
We plot the target model’s performance versus the re-
quired number of GPU days. KD with smaller teacher vari-
ants (EfficientNet-{B1,B3}) shows worse top-1 accuracies
than ReLabel at higher training costs. For larger teachers
(EfficientNet-{B5,B7}), KD achieves comparable perfor-
mances with ReLabel (e.g. 79.0% for KD with B7 and
78.8% for ReLabel). However, they require 41 and 78
GPU days to train, compared to mere 13.6 using ReLabel.
ReLabel-based training is almost as fast as the original
training.
Storage-performance trade off. We study the trade off be-
tween the storage space for the label maps and the model
performance. ReLabel only saves top-k prediction maps for

ImageNet top1 (%)

Baseline 77.5
ReLabel 78.9

16-bit label map 78.8
8-bit label map 78.6

Table 6. Storage versus performance. How much perfor-
mance do we lose by trying to cut storage space?

Models FGSM ImageNet-A ImageNet-C

ResNet-50 25.7 4.9 27.9
+ ReLabel 31.3 (+5.6) 7.1 (+2.2) 28.1 (+0.2)

Table 7. Robustness. Impact of ReLabel on FGSM [12],
ImageNet-A [18], and ImageNet-C [17] benchmarks.

the interest of efficient storage, where the default k value is
5. We explore k ∈ {1, 3, 5, 10}. We also study the impact of
quantization levels for label maps: 16-bit and 8-bit floating
point, instead of the default 32-bit floating point. The re-
sults are in Table 6. ReLabel achieves a good performance-
efficiency trade-off when k = 5. Quantizing label maps
tend to yield only small performance drops (−0.1 pp to
−0.3 pp). When storage space is a crucial constraint, we
advise users to adopt labels maps of coarser formats.
Combination with original labels. When we combine
ReLabel’s annotation Lours ∈ [0, 1]C with the original label
Lgt ∈ {0, 1}C as 0.5Lours + 0.5Lgt, the performance de-
grades from 78.9% to 78.3% accuracy on ImageNet. They
do not seem to make a good combination.
Robustness. We evaluate the robustness of ReLabel-trained
models against test-time perturbations. We consider adver-
sarial and natural perturbations: FGSM [12], ImageNet-
A [18], and ImageNet-C [17]. FGSM introduces one-step
adversarial perturbations on images, while ImageNet-A
samples consistent of common failure cases for modern im-
age classifiers. ImageNet-C consists of 15 different types
of natural perturbations. Results are in Table 7. We observe
that ReLabel consistently improves the resilience of models
on adversarial and natural perturbations.
ReLabel examples on ImageNet. We present examples
generated by ReLabel during ImageNet training in Ap-
pendix E. As shown in the examples, ReLabel can generate
location-specific multi-labels with more precise supervision
than the original ImageNet labels.

4.2. Transfer Learning

Apart from serving as the standard benchmark, Ima-
geNet has contributed to the computer vision research and
engineering with its suite of pre-trained models. When the
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Food-101 [3] Stanford Cars [29] DTD [6] FGVC Aircraft [36] Oxford Pets [38]

ResNet-50 (Baseline) 87.98 92.64 75.43 85.09 93.92
ResNet-50 (ReLabel-trained) 88.12 92.73 75.74 88.89 94.28

Table 8. Fine-grained classification. Performance on five tasks where the model starts either from weights regularly pre-
trained on ImageNet or from weights pre-trained via ReLabel.

Faster-RCNN Mask-RCNN

bbox AP bbox AP mask AP

ResNet-50 (Baseline) 37.7 38.5 34.7
ResNet-50 (ReLabel-trained) 38.2 39.1 35.2

Table 9. Detection and instance segmentation. Transfer
learning performances for Faster-RCNN [41] and Mask-
RCNN [15] on COCO dataset [32].

target task has only a small number of annotated data,
transfer learning from the ImageNet pre-training usually
helps [28]. We examine here whether the ReLabel-induced
improvements on the ImageNet performances transfer to
various downstream tasks. We present the results of 5 fine-
grained classification tasks and the object detection and
instance segmentation tasks on COCO with models pre-
trained on ImageNet with ReLabel.
Fine-grained classification tasks. We evaluate ReLabel-
pretrained ResNet-50 on five fine-grained classification
tasks: Food-101 [3], Stanford Cars [29], DTD [6], FGVC
Aircraft [36], and Oxford Pets [38]. We use the standard
data augmentation as in Section 4.1. Models are fine-tuned
with SGD for 5,000 iterations, following the convention
for fine-tuning tasks [4]. To find the best learning rate and
weight decay values for each task, we perform a grid search
per task and report the best performance. Table 8 shows
the results. Note that the ReLabel-trained model results in a
consistent improvement over the vanilla pre-trained model.
For example, on FGVC Aircraft, ReLabel pre-training im-
proves the downstream task performance by +3.8 pp.
Object detection and instance segmentation. We used
Faster-RCNN [41] and Mask-RCNN [15] with feature pyra-
mid network (FPN [31]) as the base models for object de-
tection and instance segmentation tasks, respectively. The
backbone networks of Faster-RCNN and Mask-RCNN are
initialized with ReLabel-pretrained ResNet-50 model, and
then fine-tuned on COCO dataset [32] by the original train-
ing strategy [41, 15] with the image size of 1200 × 800.
Table 9 shows the results. Pre-training with ReLabel im-
proves the bbox AP of Faster-RCNN by +0.5 pp and the
mask AP of Mask-RCNN by +0.5 pp. Pre-training a model
with cleaner supervision like ReLabel leads to better feature
representations and boosts the object detection and instance

COCO (mAP)

ResNet-50 69.0
ResNet-50 + ReLabel (machine) 72.7
ResNet-50 + ReLabel (oracle) 73.2

ResNet-101 76.6
ResNet-101 + ReLabel (machine) 79.0
ResNet-101 + ReLabel (oracle) 80.9

Table 10. Originally multi-label tasks. Results of ReLabel
on COCO multi-class classification task [32].

segmentation performances.

4.3. Multi-label Classification

ReLabel is designed to transform a single-label training
set into a multi-label training set. Nonetheless, ReLabel and
LabelPooling also helps improving an originally multi-label
training set by providing additional localized supervision
signals, given that the random crop augmentation is a popu-
lar recipe for multi-label training as well [5, 55, 59]. To see
this effect, we experiment with the multi-label classifica-
tion dataset COCO [32] with multiple human-annotated la-
bels per image. The baseline multi-label training uses multi-
hot annotation L ∈ {0, 1}C (C = 80 for COCO). In-
stead, we utilize the segmentation ground truth of COCO
dataset as label maps L ∈ {0, 1}H×W×C (i.e., an oracle
case of ReLabel). We also compare with machine-generated
label maps L ∈ RH×W×C from a state-of-the-art multi-
label classifier [1] to see the effectiveness of the oracle la-
bel map. We then train our multi-label classifiers with our
LabelPooling based on the label maps according to the ran-
dom crop coordinates. We conduct experiments on ResNet-
50 and ResNet-101 networks with the input size 224× 224
and 448× 448, respectively, using the binary cross-entropy
loss for all methods considered. More training details are
in Appendix D.3. Table 10 shows the results. We observe
that applying ReLabel with machine-generated label maps
results in +3.7 pp and +2.4 pp mAP gains and, with oracle
label maps, ReLabel achieves more gain of +4.2 pp and +4.3
pp mAP gains on ResNet-50 and ResNet-101 networks, re-
spectively. In summary, the location-wise supervision from
ReLabel helps the multi-label classification training.
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5. Conclusion

We have proposed a re-labeling strategy, ReLabel, for
the 1.28 million training images on ImageNet. ReLabel
transforms the single-class labels assigned once per image
into multi-class labels assigned for every region in an im-
age, based on a machine annotator. The machine annotator
is a strong classifier trained on a large extra source of visual
data. We also proposed a novel scheme for training a clas-
sifier with the localized multi-class labels (LabelPooling).
We experimentally verified significant performance gains
induced by our labels and the corresponding training tech-
nique. ReLabel results in a consistent gain across tasks, in-
cluding the ImageNet benchmarks, transfer-learning tasks,
and multi-label classification tasks. We will open-source the
localized multi-labels from ReLabel and the corresponding
pre-trained models.
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Appendix

A. ReLabel Algorithm

Algorithm A1 ReLabel Pseudo-code
1: for each training iteration do
2: # Load image data and label maps (assume the minibatch size is 1 for simplicity)
3: input, label map = get minibatch(dataset)
4: # Random crop augmentation
5: [cx,cy ,cw,ch] = get crop region(size(input))
6: input = random crop(input, [cx,cy ,cw,ch])
7: input = resize(input, [224, 224])
8: # LabelPooling process
9: target = RoIAlign(label map, coords=[cx,cy ,cw,ch], output size=(1, 1))

10: target = softmax(target)
11: # Update model
12: output = model forward(input)
13: loss = cross entropy loss(output, target)
14: model update(loss)
15: end for

We present the pseudo-codes of ReLabel in Algorithm A1. We assume the minibatch size is 1 for simplicity. First, an input
image and its saved label map are loaded from the dataset. Then the random crop augmentation is conducted on the input
image. We then perform RoIAlign on the label map with the random crop coordinates [cx,cy ,cw,ch]. Finally softmax
function is conducted on the pooled label map to get a multi-label ground-truth in [0, 1]C . The multi-label ground-truth is
used for updating the model with the standard cross-entropy loss.

Conv
Global

Average

Pooling

Fully-

connected 

Layer

Conv
1x1 

conv

[1×1×d] Predicted Label

[1×1×C]

Label map

[H×W×C]

Image Feature map

[H×W×d]

Image Feature map

[H×W×d]

Original 

Classifier 

Modified 

Classifier 

Figure A1. Obtaining a label map. The original classifier (upper) takes an input image and generates a predicted label
Lorg ∈ R1×1×C . On the other hand, the modified classifier (lower) outputs a label map Lours ∈ RH×W×C by removing the
global average pooling layer. Note that the “Fully-connected Layer” (Wfc ∈ Rd×C) of the original classifier and “1 × 1
conv” (W1x1 conv ∈ R1×1×d×C) of the modified classifier are identical.
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Figure A2. Label map examples. Each example presents the input image (left), label map of top-1 class (middle), label map
of top-2 class (right).

ImageNet ImageNetV2 ImageNetV2 ImageNetV2
Network Supervision (Top-Images) (Matched Frequency) (Threshold 0.7)

ResNet-50 Original 77.5 79.0 65.2 74.3
ResNet-50 Label smoothing (ε=0.1) [49] 78.0 79.5 66.0 74.6
ResNet-50 Label cleaning [2] 78.1 79.1 64.9 73.9
ResNet-50 ReLabel 78.9 80.5 67.3 76.0

Table A1. ImageNetV2 results. We report performances on ImageNetV2 [40] metrics.

B. Re-labeling ImageNet: Detailed Procedure and Examples
We show the detailed process of obtaining a label map in Figure A1. The original classifier takes an input image, computes

the feature map (RH×W×d), conducts global average pooling (R1×1×d), and generates the predicted label Lorg ∈ R1×1×C

with the fully-connected layer (Wfc ∈ Rd×C). On the other hand, the modified classifier do not have global average pooling
layer, and outputs a label map Lours ∈ RH×W×C from the feature map (RH×W×d). Note that the fully-connected layer
(Wfc ∈ Rd×C) of the original classifier and 1× 1 conv (W1x1 conv ∈ R1×1×d×C) of the modified classifier are identical.

We utilize EfficientNet-L2 [56] as our machine annotator classifier whose input size is 475× 475. For all training images,
we resize them into 475× 475 without cropping and generate label maps by feed-forwarding them. The spatial size of label
map (W,H) is (15, 15), number of channel d is 5504, and the number of classes C is 1000.

We present several label map examples in Figure A2. From a label map L ∈ RH×W×C , we only show two heatmaps for
the classifier’s top-2 categories. The heatmap is L[ci, :, :] ∈ RH×W where ci is one of the top-2 categories. As shown in the
examples, the top-1 and top-2 heatmaps are disjointly located at each object’s position.

C. Results on ImageNetV2

We present full ImageNetV2 [40] results in Table A1. Three metrics “Top-Images”, “Matched Frequency”, and “Threshold
0.7” are reported with two baselines Label smoothing [49] and Label cleaning [2]. ReLabel obtained 80.5, 67.3, and 76.0
accuracies on ImageNetV2 “Top-Images”, “Matched Frequency”, and “Threshold 0.7”, where the gains are +1.5, +2.1, and
+1.7 pp against the vanilla ResNet-50, respectively.

D. Implementation details
We present the implementation details in this section.
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D.1. EfficientNet on ImageNet

We utilize an open-source pytorch codebase [23] to train EfficientNet variants on ImageNet. We utilize AdamP [19]
optimizer and set training epochs 400, minibatch size 512, learning rate 0.002, and weight decay 0.01 with four NVIDIA
V100 GPUs. Dropout and drop path [25] regularizers are used with dropout rate 0.2 and drop path rate 0.2, respectively.
We also utilize Random erasing [63], RandAugment [7], and Mixup [62] augmentations as suggested in [23]. All training
settings are samely used for both vanilla training and ReLabel training of EfficientNet variants.

D.2. Knowledge Distillation

Training with knowledge distillation is also conducted on the pytorch codebase [23]. For teacher network, we use official
EfficientNet (B1-B7) [50] weights trained with noisy student [56] techniques. We utilize outputs of networks after soft-max
layer and the cross-entropy loss between teacher and students is only used for the distillation loss [22]. The temperature and
cross-entropy with ground truth were not used. Since the EfficientNet teachers are trained with large-size images (240 ×
240− 600× 600), we put the large-size image for teacher network and resize it to 224× 224 for inputs of student network.
We adopt SGD with Nesterov momentum for the optimizer and the standard setting [16] with long epochs: learning rate 0.1,
weight decay 10−4, batch size 256, training epochs 300 and cosine learning rate schedule with four NVIDIA V100 GPUs.

D.3. COCO Multi-label Classification

As in recent multi-label classification works [5, 55, 59, 1], the classifier model is initialized with ImageNet-pretrained
model and fine-tuned on COCO multi-label dataset [32]. We utilize the official pytorch ImageNet-pretrained model using
torchvision toolbox4. The weight of the final fully-connected layer is modified from Rd×1000 to Rd×80 to fit the number of
classes for COCO dataset and the weight matrix is randomly initialized. For fine-tuning, we utilize AdamP [19] optimizer
and cosine learning rate schedule with initial learning rate 0.0002 and weight decay 0.01. We set the minibatch size to 128.
The input resolution is 224×224 for ResNet-50 and 448×448 for for ResNet-101. To obtain machine-generated label maps,
we utilize a pre-trained TResNet-XL model [1] whose input size is 640× 640 and mAP is 88.4%.

E. ReLabel Examples on ImageNet
We present ReLabel exsamples on ImageNet training data in Figure A3. We show the full training images (left) and the

random cropped patches (right). The random crop coordinates are denoted by blue bounding boxes. We also present the
original ImageNet label and the new multi-labels by ReLabel. As shown in the examples, ReLabel can generate location-
specific multi-labels with more precise supervision than the original ImageNet label.

4https://github.com/pytorch/vision
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Figure A3. ReLabel examples during ImageNet training. We present selected examples generated by ReLabel during
ImageNet training. For each example, the left image is the full training image and the right image is the random cropped
patch. The random crop coordinates are denoted by blue bounding boxes. The original ImageNet label and ReLabel are also
presented.
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